48,416 research outputs found

    Decision Support Variables for Reverse Logistics

    Get PDF
    The purpose of this study is to discover variables that should be considered in the creation of a strategic knowledge and decision support system for reverse logistics. This paper addresses a gap in the Lambert model of supply chain management through refining the link between the returns management process and the overall strategy of a supply chain firm by addressing the decision as to which reverse logistics activity to pursue. Current literature is sparse in this area and existing DSS do not specifically address this problem. In order to determine what variables should be considered in such a system, recent reverse logistics frameworks which address returned-products disposition were reviewed. Using an inductive literature review process and subsequent content analysis, the authors found seven factors that are relevant to reverse logistics disposition. Propositions are offered for further research in this area. The views expressed in this article are those of the authors and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the U.S. Government

    Decisions Variables Within Reverse Logistics

    Get PDF
    This paper addresses a gap in the Lambert model of supply chain management through refining the link between the returns management process and the overall strategy of a supply chain firm by addressing the decision as to which reverse logistics activity to pursue. Current literature is sparse in this area and existing decision support systems (DSS) do not specifically address this problem. In order to determine what variables should be considered in such a DSS, recent DSS and simulation literature that addresses decision making within reverse logistics was reviewed. The author compiled a listing of 60 different variables spanning six broad categories, which identify areas for further research, gives researchers a comprehensive listing of variables to consider, and that can be analyzed in further studies to create a disposition decision framework and corresponding DSS. he views expressed in this article are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the U.S. Government

    BOCR analysis applied to the management of end-of-life systems

    Get PDF
    Nowadays, most of the firms are involved in a sustainable development approach aiming to ensure financial, social and environmental performance, in order to satisfy legislation and customers that have become increasingly demanding. Reverse logistics is part of the process of sustainable development. This process triggered by the consumer consists in a series of activities required for recovery and reprocessing of used products. These products can be reused in some cases. In the framework of sustainable development, this paper is concerned by the design and the evaluation process of withdrawal plans in the field of aircraft dismantling. A multi-criteria decision aid support based on BOCR analysis is proposed to select adequate withdrawal plans. Variables used to evaluate a candidate withdrawal plan constitute what we refer to as repatriation trajectory. A repatriation plan is evaluated on a bipolar scale by two measures namely selectability measure and rejectability measure in the framework of satisficing game to highlight positive aspects and negative aspects with regards to decision making main objectives

    A Conceptual Framework of Reverse Logistics Impact on Firm Performance

    Get PDF
    This study aims to examine the reverse logistics factors that impact upon firm performance. We review reverse logistics factors under three research streams: (a) resource-based view of the firm, including: Firm strategy, Operations management, and Customer loyalty (b) relational theory, including: Supply chain efficiency, Supply chain collaboration, and institutional theory, including: Government support and Cultural alignment. We measured firm performance with 5 measures: profitability, cost, innovativeness, perceived competitive advantage, and perceived customer satisfaction. We discuss implications for research, policy and practice

    Design of Closed Loop Supply Chains

    Get PDF
    Increased concern for the environment has lead to new techniques to design products and supply chains that are both economically and ecologically feasible. This paper deals with the product - and corresponding supply chain design for a refrigerator. Literature study shows that there are many models to support product design and logistics separately, but not in an integrated way. In our research we develop quantitative modelling to support an optimal design structure of a product, i.e. modularity, repairability, recyclability, as well as the optimal locations and goods flows allocation in the logistics system. Environmental impacts are measured by energy and waste. Economic costs are modelled as linear functions of volumes with a fixed set-up component for facilities. We apply this model using real life R&D data of a Japanese consumer electronics company. The model is run for different scenarios using different parameter settings such as centralised versus decentralised logistics, alternative product designs, varying return quality and quantity, and potential environmental legislation based on producer responsibility.supply chain management;reverse logistics;facility location;network design;product design

    To Greener Pastures: An Action Research Study on the Environmental Sustainability of Humanitarian Supply Chains

    Get PDF
    Purpose: While humanitarian supply chains (HSCs) inherently contribute to social sustainability by alleviating the suffering of afflicted communities, their unintended adverse environmental impact has been overlooked hitherto. This paper draws upon contingency theory to synthesize green practices for HSCs, identify the contingency factors that impact on greening HSCs and explore how focal humanitarian organizations (HOs) can cope with such contingency factors. Design/methodology/approach: Deploying an action research methodology, two-and-a-half cycles of collaboration between researchers and a United Nations agency were completed. The first half-cycle developed a deductive greening framework, synthesizing extant green practices from the literature. In the second and third cycles, green practices were adopted/customized/developed reflecting organizational and contextual contingency factors. Action steps were implemented in the HSC for prophylactics, involving an operational mix of disaster relief and development programs. Findings: First, the study presents a greening framework that synthesizes extant green practices in a suitable form for HOs. Second, it identifies the contingency factors associated with greening HSCs regarding funding environment, stakeholders, field of activity and organizational management. Third, it outlines the mechanisms for coping with the contingency factors identified, inter alia, improving the visibility of headquarters over field operations, promoting collaboration and resource sharing with other HOs as well as among different implementing partners in each country, and working with suppliers for greener packaging. The study advances a set of actionable propositions for greening HSCs. Practical implications: Using an action research methodology, the study makes strong practical contributions. Humanitarian practitioners can adopt the greening framework and the lessons learnt from the implementation cycles presented in this study. Originality/value: This is one of the first empirical studies to integrate environmental sustainability and HSCs using an action research methodology

    Robust Multi-Objective Sustainable Reverse Supply Chain Planning: An Application in the Steel Industry

    Get PDF
    In the design of the supply chain, the use of the returned products and their recycling in the production and consumption network is called reverse logistics. The proposed model aims to optimize the flow of materials in the supply chain network (SCN), and determine the amount and location of facilities and the planning of transportation in conditions of demand uncertainty. Thus, maximizing the total profit of operation, minimizing adverse environmental effects, and maximizing customer and supplier service levels have been considered as the main objectives. Accordingly, finding symmetry (balance) among the profit of operation, the environmental effects and customer and supplier service levels is considered in this research. To deal with the uncertainty of the model, scenario-based robust planning is employed alongside a meta-heuristic algorithm (NSGA-II) to solve the model with actual data from a case study of the steel industry in Iran. The results obtained from the model, solving and validating, compared with actual data indicated that the model could optimize the objectives seamlessly and determine the amount and location of the necessary facilities for the steel industry more appropriately.This article belongs to the Special Issue Uncertain Multi-Criteria Optimization Problem

    Eco-efficient supply chain networks: Development of a design framework and application to a real case study

    Get PDF
    © 2015 Taylor & Francis. This paper presents a supply chain network design framework that is based on multi-objective mathematical programming and that can identify 'eco-efficient' configuration alternatives that are both efficient and ecologically sound. This work is original in that it encompasses the environmental impact of both transportation and warehousing activities. We apply the proposed framework to a real-life case study (i.e. Lindt & SprĂŒngli) for the distribution of chocolate products. The results show that cost-driven network optimisation may lead to beneficial effects for the environment and that a minor increase in distribution costs can be offset by a major improvement in environmental performance. This paper contributes to the body of knowledge on eco-efficient supply chain design and closes the missing link between model-based methods and empirical applied research. It also generates insights into the growing debate on the trade-off between the economic and environmental performance of supply chains, supporting organisations in the eco-efficient configuration of their supply chains

    Sustainability vs. Circular Economy from a Disposition Decision Perspective: A Proposal of a Methodology and an Applied Example in SMEs

    Full text link
    [EN] Disposition Decision (DD) consists of deciding how to treat a recovered product, and it is one of the most important decisions in reverse logistics. Any of the selected disposition alternatives will have a significant impact on the enterprise sustainability. However, the most sustainable alternative may not be an alternative to make circular economy (CE) possible. In these cases, if the company wishes to adopt a CE strategy, it will have to switch from the most sustainable alternative to a less sustainable one that CE allows. Then, how much should be sacrificed for each sustainability dimension to make CE possible? This paper proposes a methodology for quantitatively comparing the most sustainable disposition alternative and the most sustainable CE alternative. This comparison allows small and medium enterprises (SMEs) to know how exactly all dimensions increase or decrease when selecting the most sustainable CE disposition alternative and to, therefore, assess the interest of adopting a CE policy. The proposed methodology is applied to a used tire recovery company. The results of this example show that the CE alternative offers a better environmental result but presents worst economic and social results. This example can be used as a guide for future applications other SMEs.The authors would like to acknowledge the predisposition of the recovery and treatment company of used tires by facilitating all necessary data to be used in the example application. The support of the Project GV/2017/065 "Development of a decision support tool for the management and improvement of sustainability in supply chains" funded by the Regional Government of Valencia is gratefully acknowledged. The authors also thank the anonymous reviewers and assistant editor who reviewed earlier versions of this paper.AlarcĂłn Valero, F.; CortĂ©s-Pellicer, P.; PĂ©rez Perales, D.; Sanchis, R. (2020). Sustainability vs. Circular Economy from a Disposition Decision Perspective: A Proposal of a Methodology and an Applied Example in SMEs. Sustainability. 12(23):1-26. https://doi.org/10.3390/su122310109S1261223Pieroni, M. P. P., McAloone, T. C., & Pigosso, D. C. A. (2019). Business model innovation for circular economy and sustainability: A review of approaches. Journal of Cleaner Production, 215, 198-216. doi:10.1016/j.jclepro.2019.01.036Geissdoerfer, M., Savaget, P., Bocken, N. M. P., & Hultink, E. J. (2017). The Circular Economy – A new sustainability paradigm? Journal of Cleaner Production, 143, 757-768. doi:10.1016/j.jclepro.2016.12.048Geisendorf, S., & Pietrulla, F. (2017). The circular economy and circular economic concepts-a literature analysis and redefinition. Thunderbird International Business Review, 60(5), 771-782. doi:10.1002/tie.21924Millar, N., McLaughlin, E., & Börger, T. (2019). The Circular Economy: Swings and Roundabouts? Ecological Economics, 158, 11-19. doi:10.1016/j.ecolecon.2018.12.012Prieto-Sandoval, V., Jaca, C., & Ormazabal, M. (2018). Towards a consensus on the circular economy. Journal of Cleaner Production, 179, 605-615. doi:10.1016/j.jclepro.2017.12.224Kalmykova, Y., Sadagopan, M., & Rosado, L. (2018). Circular economy – From review of theories and practices to development of implementation tools. Resources, Conservation and Recycling, 135, 190-201. doi:10.1016/j.resconrec.2017.10.034Korhonen, J., Honkasalo, A., & SeppĂ€lĂ€, J. (2018). Circular Economy: The Concept and its Limitations. Ecological Economics, 143, 37-46. doi:10.1016/j.ecolecon.2017.06.041Mota, B., Gomes, M. I., Carvalho, A., & Barbosa-Povoa, A. P. (2015). Towards supply chain sustainability: economic, environmental and social design and planning. Journal of Cleaner Production, 105, 14-27. doi:10.1016/j.jclepro.2014.07.052Guarnieri, P., Camara e Silva, L., & Vieira, B. (2020). How to Assess Reverse Logistics of e-Waste Considering a Multicriteria Perspective? A Model Proposition. Logistics, 4(4), 25. doi:10.3390/logistics4040025Agrawal, S., & Singh, R. K. (2019). Analyzing disposition decisions for sustainable reverse logistics: Triple Bottom Line approach. Resources, Conservation and Recycling, 150, 104448. doi:10.1016/j.resconrec.2019.104448Farahani, S., Otieno, W., & Barah, M. (2019). Environmentally friendly disposition decisions for end-of-life electrical and electronic products: The case of computer remanufacture. Journal of Cleaner Production, 224, 25-39. doi:10.1016/j.jclepro.2019.03.182Hazen, B. T., Hall, D. J., & Hanna, J. B. (2012). Reverse logistics disposition decision‐making. International Journal of Physical Distribution & Logistics Management, 42(3), 244-274. doi:10.1108/09600031211225954Agrawal, S., Singh, R. K., & Murtaza, Q. (2015). A literature review and perspectives in reverse logistics. Resources, Conservation and Recycling, 97, 76-92. doi:10.1016/j.resconrec.2015.02.009Kumar, S., & Malegeant, P. (2006). Strategic alliance in a closed-loop supply chain, a case of manufacturer and eco-non-profit organization. Technovation, 26(10), 1127-1135. doi:10.1016/j.technovation.2005.08.002Singh, R. K., & Agrawal, S. (2018). Analyzing disposition strategies in reverse supply chains: fuzzy TOPSIS approach. Management of Environmental Quality: An International Journal, 29(3), 427-443. doi:10.1108/meq-12-2017-0177Agrawal, S., Singh, R. K., & Murtaza, Q. (2016). Disposition decisions in reverse logistics: Graph theory and matrix approach. Journal of Cleaner Production, 137, 93-104. doi:10.1016/j.jclepro.2016.07.045Skinner, L. R., Bryant, P. T., & Glenn Richey, R. (2008). Examining the impact of reverse logistics disposition strategies. International Journal of Physical Distribution & Logistics Management, 38(7), 518-539. doi:10.1108/09600030810900932Prahinski, C., & Kocabasoglu, C. (2006). Empirical research opportunities in reverse supply chains. Omega, 34(6), 519-532. doi:10.1016/j.omega.2005.01.003Thierry, M., Salomon, M., Van Nunen, J., & Van Wassenhove, L. (1995). Strategic Issues in Product Recovery Management. California Management Review, 37(2), 114-136. doi:10.2307/41165792Krikke, H. (2011). Impact of closed-loop network configurations on carbon footprints: A case study in copiers. Resources, Conservation and Recycling, 55(12), 1196-1205. doi:10.1016/j.resconrec.2011.07.001Geissdoerfer, M., Morioka, S. N., de Carvalho, M. M., & Evans, S. (2018). Business models and supply chains for the circular economy. Journal of Cleaner Production, 190, 712-721. doi:10.1016/j.jclepro.2018.04.159Rizos, V., Behrens, A., van der Gaast, W., Hofman, E., Ioannou, A., Kafyeke, T., 
 Topi, C. (2016). Implementation of Circular Economy Business Models by Small and Medium-Sized Enterprises (SMEs): Barriers and Enablers. Sustainability, 8(11), 1212. doi:10.3390/su8111212Reike, D., Vermeulen, W. J. V., & Witjes, S. (2018). The circular economy: New or Refurbished as CE 3.0? — Exploring Controversies in the Conceptualization of the Circular Economy through a Focus on History and Resource Value Retention Options. Resources, Conservation and Recycling, 135, 246-264. doi:10.1016/j.resconrec.2017.08.027A. Narayana, S., A. Elias, A., & K. Pati, R. (2014). Reverse logistics in the pharmaceuticals industry: a systemic analysis. The International Journal of Logistics Management, 25(2), 379-398. doi:10.1108/ijlm-08-2012-0073Sarkis, J., Helms, M. M., & Hervani, A. A. (2010). Reverse logistics and social sustainability. Corporate Social Responsibility and Environmental Management, 17(6), 337-354. doi:10.1002/csr.220Fleischmann, M., Krikke, H. R., Dekker, R., & Flapper, S. D. P. (2000). A characterisation of logistics networks for product recovery. Omega, 28(6), 653-666. doi:10.1016/s0305-0483(00)00022-0Sangwan, K. S. (2017). Key Activities, Decision Variables and Performance Indicators of Reverse Logistics. Procedia CIRP, 61, 257-262. doi:10.1016/j.procir.2016.11.185Mangla, S. K., Kusi-Sarpong, S., Luthra, S., Bai, C., Jakhar, S. K., & Khan, S. A. (2020). Operational excellence for improving sustainable supply chain performance. Resources, Conservation and Recycling, 162, 105025. doi:10.1016/j.resconrec.2020.105025Hazen, B. T., Wu, Y., Cegielski, C. G., Jones-Farmer, L. A., & Hall, D. J. (2012). Consumer reactions to the adoption of green reverse logistics. The International Review of Retail, Distribution and Consumer Research, 22(4), 417-434. doi:10.1080/09593969.2012.690777Krumwiede, D. W., & Sheu, C. (2002). A model for reverse logistics entry by third-party providers. Omega, 30(5), 325-333. doi:10.1016/s0305-0483(02)00049-xSouza, G. C. (2012). Closed-Loop Supply Chains: A Critical Review, and Future Research*. Decision Sciences, 44(1), 7-38. doi:10.1111/j.1540-5915.2012.00394.xKannan, G., Pokharel, S., & Sasi Kumar, P. (2009). A hybrid approach using ISM and fuzzy TOPSIS for the selection of reverse logistics provider. Resources, Conservation and Recycling, 54(1), 28-36. doi:10.1016/j.resconrec.2009.06.004Wadhwa, S., Madaan, J., & Chan, F. T. S. (2009). Flexible decision modeling of reverse logistics system: A value adding MCDM approach for alternative selection. Robotics and Computer-Integrated Manufacturing, 25(2), 460-469. doi:10.1016/j.rcim.2008.01.006Ziout, A., Azab, A., & Atwan, M. (2014). A holistic approach for decision on selection of end-of-life products recovery options. Journal of Cleaner Production, 65, 497-516. doi:10.1016/j.jclepro.2013.10.001Daugherty, P. J., Richey, R. G., Genchev, S. E., & Chen, H. (2005). Reverse logistics: superior performance through focused resource commitments to information technology. Transportation Research Part E: Logistics and Transportation Review, 41(2), 77-92. doi:10.1016/j.tre.2004.04.002Stock, J. R., & Mulki, J. P. (2009). PRODUCT RETURNS PROCESSING: AN EXAMINATION OF PRACTICES OF MANUFACTURERS, WHOLESALERS/DISTRIBUTORS, AND RETAILERS. Journal of Business Logistics, 30(1), 33-62. doi:10.1002/j.2158-1592.2009.tb00098.xTibben‐Lembke, R. S., & Rogers, D. S. (2002). Differences between forward and reverse logistics in a retail environment. Supply Chain Management: An International Journal, 7(5), 271-282. doi:10.1108/13598540210447719Fleischmann, M., Bloemhof-Ruwaard, J. M., Dekker, R., van der Laan, E., van Nunen, J. A. E. E., & Van Wassenhove, L. N. (1997). Quantitative models for reverse logistics: A review. European Journal of Operational Research, 103(1), 1-17. doi:10.1016/s0377-2217(97)00230-0Jeswiet, J., & Hauschild, M. (2005). EcoDesign and future environmental impacts. Materials & Design, 26(7), 629-634. doi:10.1016/j.matdes.2004.08.016Goggin, K., & Browne, J. (2000). The resource recovery level decision for end-of-life products. Production Planning & Control, 11(7), 628-640. doi:10.1080/095372800432098Mollenkopf, D. A., Frankel, R., & Russo, I. (2010). Creating value through returns management: Exploring the marketing-operations interface. Journal of Operations Management, 29(5), 391-403. doi:10.1016/j.jom.2010.11.004MOYER, L. K., & GUPTA, S. M. (1997). ENVIRONMENTAL CONCERNS AND RECYCLING/DISASSEMBLY EFFORTS IN THE ELECTRONICS INDUSTRY. Journal of Electronics Manufacturing, 07(01), 1-22. doi:10.1142/s0960313197000026Staikos, T., & Rahimifard, S. (2007). A decision-making model for waste management in the footwear industry. International Journal of Production Research, 45(18-19), 4403-4422. doi:10.1080/00207540701450187Mangun, D., & Thurston, D. L. (2002). Incorporating component reuse, remanufacture, and recycle into product portfolio design. IEEE Transactions on Engineering Management, 49(4), 479-490. doi:10.1109/tem.2002.807292Parlamento Europeo y del Consejo de 20 de noviembre de 2013 relativa al Programa General de AcciĂłn de la UniĂłn en materia de Medio Ambiente hasta 2020 https://eur-lex.europa.eu/legal-content/ES/TXT/?uri=CELEX%3A32013D1386Hazen, B. T., Cegielski, C., & Hanna, J. B. (2011). Diffusion of green supply chain management. The International Journal of Logistics Management, 22(3), 373-389. doi:10.1108/09574091111181372Transforming Our World: The 2030 Agenda for Sustainable Development, Resolution 70/1, Resolution Adopted by the General Assembly on 25 September 2015 http://www.un.org/en/ga/search/view_doc.asp?symbol=A/RES/70/1Glavič, P., & Lukman, R. (2007). Review of sustainability terms and their definitions. Journal of Cleaner Production, 15(18), 1875-1885. doi:10.1016/j.jclepro.2006.12.006Santillo, D. (2007). Reclaiming the Definition of Sustainability (7 pp). Environmental Science and Pollution Research - International, 14(1), 60-66. doi:10.1065/espr2007.01.375Kirchherr, J., Reike, D., & Hekkert, M. (2017). Conceptualizing the circular economy: An analysis of 114 definitions. Resources, Conservation and Recycling, 127, 221-232. doi:10.1016/j.resconrec.2017.09.005Stahel, W. R. (2016). The circular economy. Nature, 531(7595), 435-438. doi:10.1038/531435aZink, T., & Geyer, R. (2017). Circular Economy Rebound. Journal of Industrial Ecology, 21(3), 593-602. doi:10.1111/jiec.12545Gusmerotti, N. M., Testa, F., Corsini, F., Pretner, G., & Iraldo, F. (2019). Drivers and approaches to the circular economy in manufacturing firms. Journal of Cleaner Production, 230, 314-327. doi:10.1016/j.jclepro.2019.05.044Schroeder, P., Anggraeni, K., & Weber, U. (2018). The Relevance of Circular Economy Practices to the Sustainable Development Goals. Journal of Industrial Ecology, 23(1), 77-95. doi:10.1111/jiec.12732Vermunt, D. A., Negro, S. O., Verweij, P. A., Kuppens, D. V., & Hekkert, M. P. (2019). Exploring barriers to implementing different circular business models. Journal of Cleaner Production, 222, 891-902. doi:10.1016/j.jclepro.2019.03.052Govindan, K., Soleimani, H., & Kannan, D. (2015). Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future. European Journal of Operational Research, 240(3), 603-626. doi:10.1016/j.ejor.2014.07.012Bufardi, A., Gheorghe, R., Kiritsis, D., & Xirouchakis, P. (2004). Multicriteria decision-aid approach for product end-of-life alternative selection. International Journal of Production Research, 42(16), 3139-3157. doi:10.1080/00207540410001699192Iakovou, E., Moussiopoulos, N., Xanthopoulos, A., Achillas, C., Michailidis, N., Chatzipanagioti, M., 
 Kikis, V. (2009). A methodological framework for end-of-life management of electronic products. Resources, Conservation and Recycling, 53(6), 329-339. doi:10.1016/j.resconrec.2009.02.001Lee, S. G., Lye, S. W., & Khoo, M. K. (2001). A Multi-Objective Methodology for Evaluating Product End-of-Life Options and Disassembly. The International Journal of Advanced Manufacturing Technology, 18(2), 148-156. doi:10.1007/s001700170086Chan, J. W. K. (2008). Product end-of-life options selection: grey relational analysis approach. International Journal of Production Research, 46(11), 2889-2912. doi:10.1080/00207540601043124Haji Vahabzadeh, A., Asiaei, A., & Zailani, S. (2015). Green decision-making model in reverse logistics using FUZZY-VIKOR method. Resources, Conservation and Recycling, 103, 125-138. doi:10.1016/j.resconrec.2015.05.023Azapagic, A., Millington, A., & Collett, A. (2006). A Methodology for Integrating Sustainability Considerations into Process Design. Chemical Engineering Research and Design, 84(6), 439-452. doi:10.1205/cherd05007Silva, N. D., Jawahir, I. S., Jr., O. D., & Russell, M. (2009). A new comprehensive methodology for the evaluation of product sustainability at the design and development stage of consumer electronic products. International Journal of Sustainable Manufacturing, 1(3), 251. doi:10.1504/ijsm.2009.023973Hula, A., Jalali, K., Hamza, K., Skerlos, S. J., & Saitou, K. (2003). Multi-Criteria Decision-Making for Optimization of Product Disassembly under Multiple Situations. Environmental Science & Technology, 37(23), 5303-5313. doi:10.1021/es0345423Jaafar, I. H., Venkatachalam, A., Joshi, K., Ungureanu, A. C., De Silva, N., Rouch, K. E., 
 Jawahir, I. S. (s. f.). Product Design for Sustainability: A New Assessment Methodology and Case Studies. Environmentally Conscious Mechanical Design, 25-65. doi:10.1002/9780470168202.ch2Mateus, R., & Bragança, L. (2011). Sustainability assessment and rating of buildings: Developing the methodology SBToolPT–H. Building and Environment, 46(10), 1962-1971. doi:10.1016/j.buildenv.2011.04.023Culaba, A. B., & Purvis, M. R. I. (1999). A methodology for the life cycle and sustainability analysis of manufacturing processes. Journal of Cleaner Production, 7(6), 435-445. doi:10.1016/s0959-6526(99)00231-0Andreoli, M., & Tellarini, V. (2000). Farm sustainability evaluation: methodology and practice. Agriculture, Ecosystems & Environment, 77(1-2), 43-52. doi:10.1016/s0167-8809(99)00091-2Girardi, P., & Temporelli, A. (2017). Smartainability: A Methodology for Assessing the Sustainability of the Smart City. Energy Procedia, 111, 810-816. doi:10.1016/j.egypro.2017.03.243Presley, A., Meade, L., & Sarkis, J. (2007). A strategic sustainability justification methodology for organizational decisions: a reverse logistics illustration. International Journal of Production Research, 45(18-19), 4595-4620. doi:10.1080/00207540701440220LeĂłn‐Soriano, R., JesĂșs Muñoz‐Torres, M., & Chalmeta‐Rosaleñ, R. (2010). Methodology for sustainability strategic planning and management. Industrial Management & Data Systems, 110(2), 249-268. doi:10.1108/02635571011020331Bakar, M. S. A., & Rahimifard, S. (2007). Computer-aided recycling process planning for end-of-life electrical and electronic equipment. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 221(8), 1369-1374. doi:10.1243/09544054jem801scKusi-Sarpong, S., Gupta, H., & Sarkis, J. (2018). A supply chain sustainability innovation framework and evaluation methodology. International Journal of Production Research, 57(7), 1990-2008. doi:10.1080/00207543.2018.1518607Sienkiewicz, M., Janik, H., Borzędowska-Labuda, K., & KuciƄska-Lipka, J. (2017). Environmentally friendly polymer-rubber composites obtained from waste tyres: A review. Journal of Cleaner Production, 147, 560-571. doi:10.1016/j.jclepro.2017.01.121SIGNUS Memoria Web https://www.signus.es/memoria2019/Horodytska, O., Kiritsis, D., & Fullana, A. (2020). Upcycling of printed plastic films: LCA analysis and effects on the circular economy. Journal of Cleaner Production, 268, 122138. doi:10.1016/j.jclepro.2020.12213
    • 

    corecore