206,250 research outputs found

    A MAS-based infrastructure for negotiation and its application to a water-right market

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10796-013-9443-8This paper presents a MAS-based infrastructure for the specification of a negotiation framework that handles multiple negotiation protocols in a coherent and flexible way. Although it may be used to implement one single type of agreement mechanism, it has been designed in such a way that multiple mechanisms may be available at any given time, to be activated and tailored on demand (on-line) by participating agents. The framework is also generic enough so that new protocols may be easily added. This infrastructure has been successfully used in a case study to implement a simulation tool as a component of a larger framework based on an electronic market of water rights.This paper was partially funded by the Consolider AT project CSD2007-0022 INGENIO 2010 of the Spanish Ministry of Science and Innovation; the MICINN projects TIN2011-27652-C03-01 and TIN2009-13839-C03-01; and the Valencian Prometeo project 2008/051.Alfonso Espinosa, B.; Botti Navarro, VJ.; Garrido Tejero, A.; Giret Boggino, AS. (2014). A MAS-based infrastructure for negotiation and its application to a water-right market. Information Systems Frontiers. 16(2):183-199. https://doi.org/10.1007/s10796-013-9443-8S183199162Alberola, J.M., Such, J.M., Espinosa, A., Botti, V., García-Fornes, A. (2008). Magentix: a multiagent platform integrated in linux. In EUMAS (pp. 1–10).Alfonso, B., Vivancos, E., Botti, V., García-Fornes, A. (2011). Integrating jason in a multi-agent platform with support for interaction protocols. In Proceedings of the compilation of the co-located workshops on AGERE!’11, SPLASH ’11 workshop (pp. 221–226). New York: ACM.Andreu, J., Capilla, J., Sanchis, E. (1996). AQUATOOL, a generalized decision-support system for water-resources planning and operational management. Journal of Hydrology, 177(3–4), 269–291.Bellifemine, F., Caire, G., Greenwood, D. (2007). Developing multi-agent systems with JADE. Wiley.Bordini, R.H., Hübner, J.F., Wooldridge, M. (2007). Programming multi-agent systems in agent speak usign Jason. Wiley.Botti, V., Garrido, A., Gimeno, J.A., Giret, A., Noriega, P. (2011). The role of MAS as a decision support tool in a water-rights market. In AAMAS 2011 workshops, LNAI 7068 (pp. 35–49). Springer.Braubach, L., Pokahr, A., Lamersdorf, W. (2005). Software agent-based applications, platforms and development kits In C.M.K.R. Unland (Ed.), Jadex: a BDI agent system combining middleware and reasoning (Vol. 9, pp. 143–168): Birkhäuser-Verlag.DeSanctis, G.B., & Gallupe, B. (1987). A foundation for the study of group decision support systems. Knowledge based systems, 33(5), 589–609.Eckersley, P. (2003). Virtual markets for virtual goods. Available at http://www.ipria.com/publications/wp/2003/IPRIAWP02.2003.pdf (Accessed April 2012).Fjermestad, J., & Hiltz, S. (2001). Group support systems: a descriptive evaluation of case and field studies. Journal of Management Information Systems, 17(3), 115–161.Fogués, R.L., Alberola, J.M., Such, J.M., Espinosa, A., García-Fornes, A. (2010). Towards dynamic agent interaction support in open multiagent systems. In Proceedings of the 13th international conference of the catalan association for artificial intelligence (Vol. 220, pp. 89–98). IOS Press.Foundation for Intelligent Physical Agents. (2001). FIPA interaction protocol library specification XC00025E. FIPA Consortium.Garrido, A., Arangu, M., Onaindia, E. (2009). A constraint programming formulation for planning: from plan scheduling to plan generatio. Journal of Scheduling, 12(3), 227–256.Giret, A., Garrido, A., Gimeno, J.A., Botti, V., Noriega, P. (2011). A MAS decision support tool for water-right markets. In Proceedings of the tenth international conference on autonomous agents and multiagent systems (Demonstrations@AAMAS) (pp. 1305–1306).Gomez-Limon, J., & Martinez, Y. (2006). Multi-criteria modelling of irrigation water market at basin level: a Spanish case study. European Journal of Operational Research, 173, 313–336.Janjua, N.K., Hussain, F.K., Hussain, O.K. (2013). Semantic information and knowledge integration through argumentative reasoning to support intelligent decision making. Information Systems Frontiers, 15(2), 167–192.jen Hsu, J.Y., Lin, K.-J., Chang, T.-H., ju Ho, C., Huang, H.-S., rong Jih, W. (2006). Parameter learning of personalized trust models in broker-based distributed trust management. Information Systems Frontiers, 8(4), 321–333.Kersten, G., & Lai, H. (2007). European Journal of Operational Research, 180(2), 922–937.Lee, N., Bae, J.K., Koo, C. (2012). A case-based reasoning based multi-agent cognitive map inference mechanism: an application to sales opportunity assessment. Information Systems Frontiers, 14(3), 653–668.Luck, M., & AgentLink. (2005). Agent technology: computing as interaction: a roadmap for agent-based computing. Compiled, written and edited by Michael Luck et al. AgentLink, Southampton.Ma, J., & Orgun, M.A. (2008). Formalizing theories of trust for authentication protocols. Information Systems Frontiers, 10(1), 19–32.Pokahr, A., Braubach, L., Walczak, A., Lamersdorf, W. (2007). Developing multi-agent systems with JADE. Jadex-Engineering Goal-Oriented Agents (pp. 254258). Wiley.Ramos, C., Cordeiro, M., Praça, I., Vale, Z. (2005). Intelligent agents for negotiation and game-based decision support in electricity market. Engineering Intelligent Systems for Electrical Engineering and Communications, 13(2), 147–154.Sierra, C., Botti, V., Ossowski, S. (2011). Agreement computing. KI - Künstliche Intelligenz, 25(1), 57–61.Thobani, M. (1997). Formal water markets: why, when and how to introduce tradable water rights. The World Bank Research Observer, 12(2), 161–179

    Integration of decision support systems to improve decision support performance

    Get PDF
    Decision support system (DSS) is a well-established research and development area. Traditional isolated, stand-alone DSS has been recently facing new challenges. In order to improve the performance of DSS to meet the challenges, research has been actively carried out to develop integrated decision support systems (IDSS). This paper reviews the current research efforts with regard to the development of IDSS. The focus of the paper is on the integration aspect for IDSS through multiple perspectives, and the technologies that support this integration. More than 100 papers and software systems are discussed. Current research efforts and the development status of IDSS are explained, compared and classified. In addition, future trends and challenges in integration are outlined. The paper concludes that by addressing integration, better support will be provided to decision makers, with the expectation of both better decisions and improved decision making processes

    Intelligent systems in manufacturing: current developments and future prospects

    Get PDF
    Global competition and rapidly changing customer requirements are demanding increasing changes in manufacturing environments. Enterprises are required to constantly redesign their products and continuously reconfigure their manufacturing systems. Traditional approaches to manufacturing systems do not fully satisfy this new situation. Many authors have proposed that artificial intelligence will bring the flexibility and efficiency needed by manufacturing systems. This paper is a review of artificial intelligence techniques used in manufacturing systems. The paper first defines the components of a simplified intelligent manufacturing systems (IMS), the different Artificial Intelligence (AI) techniques to be considered and then shows how these AI techniques are used for the components of IMS

    Machine learning and its applications in reliability analysis systems

    Get PDF
    In this thesis, we are interested in exploring some aspects of Machine Learning (ML) and its application in the Reliability Analysis systems (RAs). We begin by investigating some ML paradigms and their- techniques, go on to discuss the possible applications of ML in improving RAs performance, and lastly give guidelines of the architecture of learning RAs. Our survey of ML covers both levels of Neural Network learning and Symbolic learning. In symbolic process learning, five types of learning and their applications are discussed: rote learning, learning from instruction, learning from analogy, learning from examples, and learning from observation and discovery. The Reliability Analysis systems (RAs) presented in this thesis are mainly designed for maintaining plant safety supported by two functions: risk analysis function, i.e., failure mode effect analysis (FMEA) ; and diagnosis function, i.e., real-time fault location (RTFL). Three approaches have been discussed in creating the RAs. According to the result of our survey, we suggest currently the best design of RAs is to embed model-based RAs, i.e., MORA (as software) in a neural network based computer system (as hardware). However, there are still some improvement which can be made through the applications of Machine Learning. By implanting the 'learning element', the MORA will become learning MORA (La MORA) system, a learning Reliability Analysis system with the power of automatic knowledge acquisition and inconsistency checking, and more. To conclude our thesis, we propose an architecture of La MORA

    A Neural-CBR System for Real Property Valuation

    Get PDF
    In recent times, the application of artificial intelligence (AI) techniques for real property valuation has been on the increase. Some expert systems that leveraged on machine intelligence concepts include rule-based reasoning, case-based reasoning and artificial neural networks. These approaches have proved reliable thus far and in certain cases outperformed the use of statistical predictive models such as hedonic regression, logistic regression, and discriminant analysis. However, individual artificial intelligence approaches have their inherent limitations. These limitations hamper the quality of decision support they proffer when used alone for real property valuation. In this paper, we present a Neural-CBR system for real property valuation, which is based on a hybrid architecture that combines Artificial Neural Networks and Case- Based Reasoning techniques. An evaluation of the system was conducted and the experimental results revealed that the system has higher satisfactory level of performance when compared with individual Artificial Neural Network and Case- Based Reasoning systems

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    User-centered visual analysis using a hybrid reasoning architecture for intensive care units

    Get PDF
    One problem pertaining to Intensive Care Unit information systems is that, in some cases, a very dense display of data can result. To ensure the overview and readability of the increasing volumes of data, some special features are required (e.g., data prioritization, clustering, and selection mechanisms) with the application of analytical methods (e.g., temporal data abstraction, principal component analysis, and detection of events). This paper addresses the problem of improving the integration of the visual and analytical methods applied to medical monitoring systems. We present a knowledge- and machine learning-based approach to support the knowledge discovery process with appropriate analytical and visual methods. Its potential benefit to the development of user interfaces for intelligent monitors that can assist with the detection and explanation of new, potentially threatening medical events. The proposed hybrid reasoning architecture provides an interactive graphical user interface to adjust the parameters of the analytical methods based on the users' task at hand. The action sequences performed on the graphical user interface by the user are consolidated in a dynamic knowledge base with specific hybrid reasoning that integrates symbolic and connectionist approaches. These sequences of expert knowledge acquisition can be very efficient for making easier knowledge emergence during a similar experience and positively impact the monitoring of critical situations. The provided graphical user interface incorporating a user-centered visual analysis is exploited to facilitate the natural and effective representation of clinical information for patient care
    corecore