69,482 research outputs found

    Highly Undecidable Problems For Infinite Computations

    Get PDF
    We show that many classical decision problems about 1-counter omega-languages, context free omega-languages, or infinitary rational relations, are Π21\Pi_2^1-complete, hence located at the second level of the analytical hierarchy, and "highly undecidable". In particular, the universality problem, the inclusion problem, the equivalence problem, the determinizability problem, the complementability problem, and the unambiguity problem are all Π21\Pi_2^1-complete for context-free omega-languages or for infinitary rational relations. Topological and arithmetical properties of 1-counter omega-languages, context free omega-languages, or infinitary rational relations, are also highly undecidable. These very surprising results provide the first examples of highly undecidable problems about the behaviour of very simple finite machines like 1-counter automata or 2-tape automata.Comment: to appear in RAIRO-Theoretical Informatics and Application

    On the Structure and Complexity of Rational Sets of Regular Languages

    Get PDF
    In a recent thread of papers, we have introduced FQL, a precise specification language for test coverage, and developed the test case generation engine FShell for ANSI C. In essence, an FQL test specification amounts to a set of regular languages, each of which has to be matched by at least one test execution. To describe such sets of regular languages, the FQL semantics uses an automata-theoretic concept known as rational sets of regular languages (RSRLs). RSRLs are automata whose alphabet consists of regular expressions. Thus, the language accepted by the automaton is a set of regular expressions. In this paper, we study RSRLs from a theoretic point of view. More specifically, we analyze RSRL closure properties under common set theoretic operations, and the complexity of membership checking, i.e., whether a regular language is an element of a RSRL. For all questions we investigate both the general case and the case of finite sets of regular languages. Although a few properties are left as open problems, the paper provides a systematic semantic foundation for the test specification language FQL

    The Complexity of Infinite Computations In Models of Set Theory

    Get PDF
    We prove the following surprising result: there exist a 1-counter B\"uchi automaton and a 2-tape B\"uchi automaton such that the \omega-language of the first and the infinitary rational relation of the second in one model of ZFC are \pi_2^0-sets, while in a different model of ZFC both are analytic but non Borel sets. This shows that the topological complexity of an \omega-language accepted by a 1-counter B\"uchi automaton or of an infinitary rational relation accepted by a 2-tape B\"uchi automaton is not determined by the axiomatic system ZFC. We show that a similar result holds for the class of languages of infinite pictures which are recognized by B\"uchi tiling systems. We infer from the proof of the above results an improvement of the lower bound of some decision problems recently studied by the author

    Synchronous Subsequentiality and Approximations to Undecidable Problems

    Full text link
    We introduce the class of synchronous subsequential relations, a subclass of the synchronous relations which embodies some properties of subsequential relations. If we take relations of this class as forming the possible transitions of an infinite automaton, then most decision problems (apart from membership) still remain undecidable (as they are for synchronous and subsequential rational relations), but on the positive side, they can be approximated in a meaningful way we make precise in this paper. This might make the class useful for some applications, and might serve to establish an intermediate position in the trade-off between issues of expressivity and (un)decidability.Comment: In Proceedings GandALF 2015, arXiv:1509.0685

    Advances and applications of automata on words and trees : abstracts collection

    Get PDF
    From 12.12.2010 to 17.12.2010, the Dagstuhl Seminar 10501 "Advances and Applications of Automata on Words and Trees" was held in Schloss Dagstuhl - Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Generic-case complexity, decision problems in group theory and random walks

    Get PDF
    We give a precise definition of ``generic-case complexity'' and show that for a very large class of finitely generated groups the classical decision problems of group theory - the word, conjugacy and membership problems - all have linear-time generic-case complexity. We prove such theorems by using the theory of random walks on regular graphs.Comment: Revised versio

    Automatic sets of rational numbers

    Full text link
    The notion of a k-automatic set of integers is well-studied. We develop a new notion - the k-automatic set of rational numbers - and prove basic properties of these sets, including closure properties and decidability.Comment: Previous version appeared in Proc. LATA 2012 conferenc
    • …
    corecore