11 research outputs found

    Flood mapping from radar remote sensing using automated image classification techniques

    Get PDF

    An intelligent classification system for land use and land cover mapping using spaceborne remote sensing and GIS

    Get PDF
    The objectives of this study were to experiment with and extend current methods of Synthetic Aperture Rader (SAR) image classification, and to design and implement a prototype intelligent remote sensing image processing and classification system for land use and land cover mapping in wet season conditions in Bangladesh, which incorporates SAR images and other geodata. To meet these objectives, the problem of classifying the spaceborne SAR images, and integrating Geographic Information System (GIS) data and ground truth data was studied first. In this phase of the study, an extension to traditional techniques was made by applying a Self-Organizing feature Map (SOM) to include GIS data with the remote sensing data during image segmentation. The experimental results were compared with those of traditional statistical classifiers, such as Maximum Likelihood, Mahalanobis Distance, and Minimum Distance classifiers. The performances of the classifiers were evaluated in terms of the classification accuracy with respect to the collected real-time ground truth data. The SOM neural network provided the highest overall accuracy when a GIS layer of land type classification (with respect to the period of inundation by regular flooding) was used in the network. Using this method, the overall accuracy was around 15% higher than the previously mentioned traditional classifiers. It also achieved higher accuracies for more classes in comparison to the other classifiers. However, it was also observed that different classifiers produced better accuracy for different classes. Therefore, the investigation was extended to consider Multiple Classifier Combination (MCC) techniques, which is a recently emerging research area in pattern recognition. The study has tested some of these techniques to improve the classification accuracy by harnessing the goodness of the constituent classifiers. A Rule-based Contention Resolution method of combination was developed, which exhibited an improvement in the overall accuracy of about 2% in comparison to its best constituent (SOM) classifier. The next phase of the study involved the design of an architecture for an intelligent image processing and classification system (named ISRIPaC) that could integrate the extended methodologies mentioned above. Finally, the architecture was implemented in a prototype and its viability was evaluated using a set of real data. The originality of the ISRIPaC architecture lies in the realisation of the concept of a complete system that can intelligently cover all the steps of image processing classification and utilise standardised metadata in addition to a knowledge base in determining the appropriate methods and course of action for the given task. The implemented prototype of the ISRIPaC architecture is a federated system that integrates the CLIPS expert system shell, the IDRISI Kilimanjaro image processing and GIS software, and the domain experts' knowledge via a control agent written in Visual C++. It starts with data assessment and pre-processing and ends up with image classification and accuracy assessment. The system is designed to run automatically, where the user merely provides the initial information regarding the intended task and the source of available data. The system itself acquires necessary information about the data from metadata files in order to make decisions and perform tasks. The test and evaluation of the prototype demonstrates the viability of the proposed architecture and the possibility of extending the system to perform other image processing tasks and to use different sources of data. The system design presented in this study thus suggests some directions for the development of the next generation of remote sensing image processing and classification systems

    Remote Sensing and Geosciences for Archaeology

    Get PDF
    This book collects more than 20 papers, written by renowned experts and scientists from across the globe, that showcase the state-of-the-art and forefront research in archaeological remote sensing and the use of geoscientific techniques to investigate archaeological records and cultural heritage. Very high resolution satellite images from optical and radar space-borne sensors, airborne multi-spectral images, ground penetrating radar, terrestrial laser scanning, 3D modelling, Geographyc Information Systems (GIS) are among the techniques used in the archaeological studies published in this book. The reader can learn how to use these instruments and sensors, also in combination, to investigate cultural landscapes, discover new sites, reconstruct paleo-landscapes, augment the knowledge of monuments, and assess the condition of heritage at risk. Case studies scattered across Europe, Asia and America are presented: from the World UNESCO World Heritage Site of Lines and Geoglyphs of Nasca and Palpa to heritage under threat in the Middle East and North Africa, from coastal heritage in the intertidal flats of the German North Sea to Early and Neolithic settlements in Thessaly. Beginners will learn robust research methodologies and take inspiration; mature scholars will for sure derive inputs for new research and applications

    Salinity hazard mapping and risk assessment in the Bourke irrigation district

    Full text link
    At no point in history have we demanded so much from our agricultural land whilst simultaneously leaving so little room for management error. Of the many possible environmental impacts from agriculture, soil and water salinisation has some of the most long-lived and deleterious effects. Despite its importance, however, land managers are often unable to make informed decisions of how to manage the risk of salinisation due to a lack of data. Furthermore, there remains no universally agreed method for salinity risk mapping. This thesis addresses these issues by investigating new methods for producing high-resolution predictions of soil salinity, soil physical properties and groundwater depth using a variety of traditional and emerging ancillary data sources. The results show that the methodologies produce accurate predictions yielding natural resource information at a scale and resolution not previously possible. Further to this, a new methodology using fuzzy logic is developed that exploits this information to produce high-resolution salinity risk maps designed to aid both agricultural and natural resource management decisions. The methodology developed represents a new and effective way of presenting salinity risk and has numerous advantages over conventional risk models. The incorporation of fuzzy logic provides a meaningful continuum of salinity risk and allows for the incorporation of uncertainty. The method also allows salinity risk to be calculated relative to any vegetation community and shows where the risk is coming from (root-zone or groundwater) allowing more appropriate management decisions to be made. The development of this methodology takes us a step closer to closing what some have called our greatest gap in agricultural knowledge. That is, our ability to manage the salinity risk at the subcatchment scale

    Reports of planetary geology and geophysics program, 1989

    Get PDF
    Abstracts of reports from Principal Investigators of NASA's Planetary Geology and Geophysics Program are compiled. The research conducted under this program during 1989 is summarized. Each report includes significant accomplishments in the area of the author's funded grant or contract
    corecore