7,454 research outputs found

    Well structured program equivalence is highly undecidable

    Full text link
    We show that strict deterministic propositional dynamic logic with intersection is highly undecidable, solving a problem in the Stanford Encyclopedia of Philosophy. In fact we show something quite a bit stronger. We introduce the construction of program equivalence, which returns the value T\mathsf{T} precisely when two given programs are equivalent on halting computations. We show that virtually any variant of propositional dynamic logic has Π11\Pi_1^1-hard validity problem if it can express even just the equivalence of well-structured programs with the empty program \texttt{skip}. We also show, in these cases, that the set of propositional statements valid over finite models is not recursively enumerable, so there is not even an axiomatisation for finitely valid propositions.Comment: 8 page

    Complexity of Non-Monotonic Logics

    Full text link
    Over the past few decades, non-monotonic reasoning has developed to be one of the most important topics in computational logic and artificial intelligence. Different ways to introduce non-monotonic aspects to classical logic have been considered, e.g., extension with default rules, extension with modal belief operators, or modification of the semantics. In this survey we consider a logical formalism from each of the above possibilities, namely Reiter's default logic, Moore's autoepistemic logic and McCarthy's circumscription. Additionally, we consider abduction, where one is not interested in inferences from a given knowledge base but in computing possible explanations for an observation with respect to a given knowledge base. Complexity results for different reasoning tasks for propositional variants of these logics have been studied already in the nineties. In recent years, however, a renewed interest in complexity issues can be observed. One current focal approach is to consider parameterized problems and identify reasonable parameters that allow for FPT algorithms. In another approach, the emphasis lies on identifying fragments, i.e., restriction of the logical language, that allow more efficient algorithms for the most important reasoning tasks. In this survey we focus on this second aspect. We describe complexity results for fragments of logical languages obtained by either restricting the allowed set of operators (e.g., forbidding negations one might consider only monotone formulae) or by considering only formulae in conjunctive normal form but with generalized clause types. The algorithmic problems we consider are suitable variants of satisfiability and implication in each of the logics, but also counting problems, where one is not only interested in the existence of certain objects (e.g., models of a formula) but asks for their number.Comment: To appear in Bulletin of the EATC

    DepQBF 6.0: A Search-Based QBF Solver Beyond Traditional QCDCL

    Full text link
    We present the latest major release version 6.0 of the quantified Boolean formula (QBF) solver DepQBF, which is based on QCDCL. QCDCL is an extension of the conflict-driven clause learning (CDCL) paradigm implemented in state of the art propositional satisfiability (SAT) solvers. The Q-resolution calculus (QRES) is a QBF proof system which underlies QCDCL. QCDCL solvers can produce QRES proofs of QBFs in prenex conjunctive normal form (PCNF) as a byproduct of the solving process. In contrast to traditional QCDCL based on QRES, DepQBF 6.0 implements a variant of QCDCL which is based on a generalization of QRES. This generalization is due to a set of additional axioms and leaves the original Q-resolution rules unchanged. The generalization of QRES enables QCDCL to potentially produce exponentially shorter proofs than the traditional variant. We present an overview of the features implemented in DepQBF and report on experimental results which demonstrate the effectiveness of generalized QRES in QCDCL.Comment: 12 pages + appendix; to appear in the proceedings of CADE-26, LNCS, Springer, 201

    LTLf/LDLf Non-Markovian Rewards

    Get PDF
    In Markov Decision Processes (MDPs), the reward obtained in a state is Markovian, i.e., depends on the last state and action. This dependency makes it difficult to reward more interesting long-term behaviors, such as always closing a door after it has been opened, or providing coffee only following a request. Extending MDPs to handle non-Markovian reward functions was the subject of two previous lines of work. Both use LTL variants to specify the reward function and then compile the new model back into a Markovian model. Building on recent progress in temporal logics over finite traces, we adopt LDLf for specifying non-Markovian rewards and provide an elegant automata construction for building a Markovian model, which extends that of previous work and offers strong minimality and compositionality guarantees

    The intuitionistic temporal logic of dynamical systems

    Get PDF
    A dynamical system is a pair (X,f)(X,f), where XX is a topological space and f ⁣:XXf\colon X\to X is continuous. Kremer observed that the language of propositional linear temporal logic can be interpreted over the class of dynamical systems, giving rise to a natural intuitionistic temporal logic. We introduce a variant of Kremer's logic, which we denote ITLc{\sf ITL^c}, and show that it is decidable. We also show that minimality and Poincar\'e recurrence are both expressible in the language of ITLc{\sf ITL^c}, thus providing a decidable logic expressive enough to reason about non-trivial asymptotic behavior in dynamical systems
    corecore