11,504 research outputs found

    Deciphering Network Community Structure by Surprise

    Get PDF
    The analysis of complex networks permeates all sciences, from biology to sociology. A fundamental, unsolved problem is how to characterize the community structure of a network. Here, using both standard and novel benchmarks, we show that maximization of a simple global parameter, which we call Surprise (S), leads to a very efficient characterization of the community structure of complex synthetic networks. Particularly, S qualitatively outperforms the most commonly used criterion to define communities, Newman and Girvan's modularity (Q). Applying S maximization to real networks often provides natural, well-supported partitions, but also sometimes counterintuitive solutions that expose the limitations of our previous knowledge. These results indicate that it is possible to define an effective global criterion for community structure and open new routes for the understanding of complex networks.Comment: 7 pages, 5 figure

    Generalized Markov stability of network communities

    Full text link
    We address the problem of community detection in networks by introducing a general definition of Markov stability, based on the difference between the probability fluxes of a Markov chain on the network at different time scales. The specific implementation of the quality function and the resulting optimal community structure thus become dependent both on the type of Markov process and on the specific Markov times considered. For instance, if we use a natural Markov chain dynamics and discount its stationary distribution -- that is, we take as reference process the dynamics at infinite time -- we obtain the standard formulation of the Markov stability. Notably, the possibility to use finite-time transition probabilities to define the reference process naturally allows detecting communities at different resolutions, without the need to consider a continuous-time Markov chain in the small time limit. The main advantage of our general formulation of Markov stability based on dynamical flows is that we work with lumped Markov chains on network partitions, having the same stationary distribution of the original process. In this way the form of the quality function becomes invariant under partitioning, leading to a self-consistent definition of community structures at different aggregation scales

    Link-Prediction Enhanced Consensus Clustering for Complex Networks

    Full text link
    Many real networks that are inferred or collected from data are incomplete due to missing edges. Missing edges can be inherent to the dataset (Facebook friend links will never be complete) or the result of sampling (one may only have access to a portion of the data). The consequence is that downstream analyses that consume the network will often yield less accurate results than if the edges were complete. Community detection algorithms, in particular, often suffer when critical intra-community edges are missing. We propose a novel consensus clustering algorithm to enhance community detection on incomplete networks. Our framework utilizes existing community detection algorithms that process networks imputed by our link prediction based algorithm. The framework then merges their multiple outputs into a final consensus output. On average our method boosts performance of existing algorithms by 7% on artificial data and 17% on ego networks collected from Facebook

    Fast community structure local uncovering by independent vertex-centred process

    Get PDF
    This paper addresses the task of community detection and proposes a local approach based on a distributed list building, where each vertex broadcasts basic information that only depends on its degree and that of its neighbours. A decentralised external process then unveils the community structure. The relevance of the proposed method is experimentally shown on both artificial and real data.Comment: 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Aug 2015, Paris, France. Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Minin
    • …
    corecore