3,836 research outputs found

    Identifying and remeshing contact interfaces in a polyhedral assembly for digital mock-up applications

    Get PDF
    Polyhedral models are widely used for applications such as manufacturing, digital simulation or visualization. They are discrete models; easy to store, to manipulate, allowing levels of resolution for visualization. They can be easily exchanged between CAD systems without loss of data. Previous works (Comput Aided Des 29(4):287–298, 1997, Comput Graphics 22(5):565–585, 1998) have focused on simplification process applied to polyhedral part models. The goal of the proposed approach is to extend these processes to polyhedral assembly models, describing the digital mock-up of a future manufacturing product. To apply simplification techniques or other processes on polyhedral assemblies, contact surfaces between interacting objects have to be identified and specific constraints must be applied for processing. The approach proposed allows checking and maintaining a global consistency of the assembly model to ensure the reliability of the future processes. Thus, contacts between objects are detected using an approach that works for a static configuration of the assembly. Finally, a precise detection of the faces involved in each contact area is made and the resulting input domains identified are processed using a local Frontal Delaunay re-meshing technique to produce an identical tessellation on both objects involved in the processed contact. The quality of the triangulation produced is also checked

    Project SEMACODE : a scale-invariant object recognition system for content-based queries in image databases

    Get PDF
    For the efficient management of large image databases, the automated characterization of images and the usage of that characterization for searching and ordering tasks is highly desirable. The purpose of the project SEMACODE is to combine the still unsolved problem of content-oriented characterization of images with scale-invariant object recognition and modelbased compression methods. To achieve this goal, existing techniques as well as new concepts related to pattern matching, image encoding, and image compression are examined. The resulting methods are integrated in a common framework with the aid of a content-oriented conception. For the application, an image database at the library of the university of Frankfurt/Main (StUB; about 60000 images), the required operations are developed. The search and query interfaces are defined in close cooperation with the StUB project “Digitized Colonial Picture Library”. This report describes the fundamentals and first results of the image encoding and object recognition algorithms developed within the scope of the project

    Measurement of Micro-bathymetry with a GOPRO Underwater Stereo Camera Pair

    Get PDF
    A GO-PRO underwater stereo camera kit has been used to measure the 3D topography (bathymetry) of a patch of seafloor producing a point cloud with a spatial data density of 15 measurements per 3 mm grid square and an standard deviation of less than 1 cm A GO-PRO camera is a fixed focus, 11 megapixel, still-frame (or 1080p high-definition video) camera, whose small form-factor and water-proof housing has made it popular with sports enthusiasts. A stereo camera kit is available providing a waterproof housing (to 61 m / 200 ft) for a pair of cameras. Measures of seafloor micro-bathymetrycapable of resolving seafloor features less than 1 cm in amplitude were possible from the stereoreconstruction. Bathymetric measurements of this scale provide important ground-truth data and boundary condition information for modeling of larger scale processes whose details depend on small-scale variations. Examples include modeling of turbulent water layers, seafloor sediment transfer and acoustic backscatter from bathymetric echo sounders

    Mesh Reduction Using an Angle Criterion Approach

    Get PDF
    Surface polygonization is the process by which a representative polygonal mesh of a surface is constructed for rendering or analysis purposes. This work presents a new surface polygonization algorithm specifically tailored to be applied to a large class of models which are created with parametric surfaces having triangular meshes. This method has particular application in the area of building virtual environments from computer-aided-design (CAD) models. The algorithm is based on an edge reduction scheme that collapses two vertices of a given triangular polygon edge onto one new vertex. A two step approach is implemented consisting of boundary edge reduction followed by interior edge reduction. A maximum optimization is used to determine the location of the new vertex. The criterion that is used to control how well the approximate surface represents the actual surface is based on examining the angle between surface normals. The advantage of this approach is that the surface discretization is a function of two, user-controlled variables, a boundary edge angle error and a surface edge angle error. The method presented here differs from existing methods in that it takes advantage of the fact that for many models, the exact surface representation of the model is known before the polygonization is attempted. Because the precise surface definition is known, a maximum optimization procedure, that uses the surface information, can be used to locate the new vertex. The algorithm attempts to overcome the deficiencies in existing techniques while minimizing the number of triangular polygons required to represent a surface and still maintaining surface integrity in the rendered model. This paper presents the algorithm and testing results

    An Integrated Procedure to Assess the Stability of Coastal Rocky Cliffs: From UAV Close-Range Photogrammetry to Geomechanical Finite Element Modeling

    Get PDF
    The present paper explores the combination of unmanned aerial vehicle (UAV) photogrammetry and three-dimensional geomechanical modeling in the investigation of instability processes of long sectors of coastal rocky cliffs. The need of a reliable and detailed reconstruction of the geometry of the cliff surfaces, beside the geomechanical characterization of the rock materials, could represent a very challenging requirement for sub-vertical coastal cliffs overlooking the sea. Very often, no information could be acquired by alternative surveying methodologies, due to the absence of vantage points, and the fieldwork could pose a risk for personnel. The case study is represented by a 600 m long sea cliff located at Sant\u2019Andrea (Melendugno, Apulia, Italy). The cliff is characterized by a very complex geometrical setting, with a suggestive alternation of 10 to 20 m high vertical walls, with frequent caves, arches and rock-stacks. Initially, the rocky cliff surface was reconstructed at very fine spatial resolution from the combination of nadir and oblique images acquired by unmanned aerial vehicles. Successively, a limited area has been selected for further investigation. In particular, data refinement/decimation procedure has been assessed to find a convenient three-dimensional model to be used in the finite element geomechanical modeling without loss of information on the surface complexity. Finally, to test integrated procedure, the potential modes of failure of such sector of the investigated cliff were achieved. Results indicate that the most likely failure mechanism along the sea cliff examined is represented by the possible propagation of shear fractures or tensile failures along concave cliff portions or over-hanging due to previous collapses or erosion of the underlying rock volumes. The proposed approach to the investigation of coastal cliff stability has proven to be a possible and flexible tool in the rapid and highly-automated investigation of hazards to slope failure in coastal areas

    3D mesh processing using GAMer 2 to enable reaction-diffusion simulations in realistic cellular geometries

    Full text link
    Recent advances in electron microscopy have enabled the imaging of single cells in 3D at nanometer length scale resolutions. An uncharted frontier for in silico biology is the ability to simulate cellular processes using these observed geometries. Enabling such simulations requires watertight meshing of electron micrograph images into 3D volume meshes, which can then form the basis of computer simulations of such processes using numerical techniques such as the Finite Element Method. In this paper, we describe the use of our recently rewritten mesh processing software, GAMer 2, to bridge the gap between poorly conditioned meshes generated from segmented micrographs and boundary marked tetrahedral meshes which are compatible with simulation. We demonstrate the application of a workflow using GAMer 2 to a series of electron micrographs of neuronal dendrite morphology explored at three different length scales and show that the resulting meshes are suitable for finite element simulations. This work is an important step towards making physical simulations of biological processes in realistic geometries routine. Innovations in algorithms to reconstruct and simulate cellular length scale phenomena based on emerging structural data will enable realistic physical models and advance discovery at the interface of geometry and cellular processes. We posit that a new frontier at the intersection of computational technologies and single cell biology is now open.Comment: 39 pages, 14 figures. High resolution figures and supplemental movies available upon reques

    3D Mesh Simplification. A survey of algorithms and CAD model simplification tests

    Get PDF
    Simplification of highly detailed CAD models is an important step when CAD models are visualized or by other means utilized in augmented reality applications. Without simplification, CAD models may cause severe processing and storage is- sues especially in mobile devices. In addition, simplified models may have other advantages like better visual clarity or improved reliability when used for visual pose tracking. The geometry of CAD models is invariably presented in form of a 3D mesh. In this paper, we survey mesh simplification algorithms in general and focus especially to algorithms that can be used to simplify CAD models. We test some commonly known algorithms with real world CAD data and characterize some new CAD related simplification algorithms that have not been surveyed in previous mesh simplification reviews.Siirretty Doriast
    corecore