160 research outputs found

    Satellite evidence for significant biophysical consequences of the “Grain for Green” Program on the Loess Plateau in China

    Get PDF
    Afforestation has been implemented worldwide as regional and national policies to address environmental problems and to improve ecosystem services. China\u27s central government launched the “Grain for Green” Program (GGP) in 1999 to increase forest cover and to control soil erosion by converting agricultural lands on steep slopes to forests and grasslands. Here a variety of satellite data products from the Moderate Resolution Imaging Spectroradiometer were used to assess the biophysical consequences of the GGP for the Loess Plateau, the pilot region of the program. The average tree cover of the plateau substantially increased because of the GGP, with a relative increase of 41.0%. The GGP led to significant increases in enhanced vegetation index (EVI), leaf area index, and the fraction of photosynthetically active radiation absorbed by canopies. The increase in forest productivity as approximated by EVI was not driven by elevated air temperature, changing precipitation, or rising atmospheric carbon dioxide concentrations. Moreover, the afforestation significantly reduced surface albedo, leading to a positive radiative forcing and a warming effect on the climate. The GGP also led to a significant decline in daytime land surface temperature and exerted a cooling effect on the climate. The GGP therefore has significant biophysical consequences by altering carbon cycling, hydrologic processes, and surface energy exchange and has significant feedbacks to the regional climate. The net radiative forcing on the climate depends on the offsetting of the negative forcing from carbon sequestration and higher evapotranspiration and the positive forcing from lower albedo

    How does the global Moderate Resolution Imaging Spectroradiometer (MODIS) Fraction of Photosynthetically Active Radiation (FPAR) product relate to regionally developed land cover and vegetation products in a semi-arid Australian savanna?

    Get PDF
    Spatio-temporally variable information on total vegetation cover is highly relevant to water quality and land management in river catchments adjacent to the Great Barrier Reef, Australia. A time series of the global Moderate Resolution Imaging Spectroradiometer (MODIS) Fraction of Photosynthetically Active Radiation (FPAR; 2000-2006) and its underlying biome classification (MOD12Q1) were compared to national land cover and regional, remotely sensed products in the dry-tropical Burdekin River. The MOD12Q1 showed reasonable agreement with a classification of major vegetation groups for 94% of the study area. We then compared dry-seasonal, quality controlled MODIS FPAR observations to (i) Landsat-based woody foliage projective cover (wFPC) (2004) and (ii) MODIS bare ground index (BGI) observations (2001-2003). Statistical analysis of the MODIS FPAR revealed a significant sensitivity to Landsat wFPC-based Vegetation Structural Categories (VSC) and VSC-specific temporal variability over the 2004 dry season. The MODIS FPAR relation to 20 coinciding MODIS BGI dry-seasonal observations was significant (ρ < 0.001) for homogeneous areas of low wFPC. Our results show that the global MODIS FPAR can be used to identify VSC, represent VSC-specific variability of PAR absorption, and indicate that the amount, structure, and optical properties of green and non-green vegetation components contribute to the MODIS FPAR signal

    On the use of MODIS EVI to assess gross primary productivity of North American ecosystems

    Get PDF
    [1] Carbon flux models based on light use efficiency (LUE), such as the MOD17 algorithm, have proved difficult to parameterize because of uncertainties in the LUE term, which is usually estimated from meteorological variables available only at large spatial scales. In search of simpler models based entirely on remote‐sensing data, we examined direct relationships between the enhanced vegetation index (EVI) and gross primary productivity (GPP) measured at nine eddy covariance flux tower sites across North America. When data from the winter period of inactive photosynthesis were excluded, the overall relationship between EVI and tower GPP was better than that between MOD17 GPP and tower GPP. However, the EVI/GPP relationships vary between sites. Correlations between EVI and GPP were generally greater for deciduous than for evergreen sites. However, this correlation declined substantially only for sites with the smallest seasonal variation in EVI, suggesting that this relationship can be used for all but the most evergreen sites. Within sites dominated by either evergreen or deciduous species, seasonal variation in EVI was best explained by the severity of summer drought. Our results demonstrate that EVI alone can provide estimates of GPP that are as good as, if not better than, current versions of the MOD17 algorithm for many sites during the active period of photosynthesis. Preliminary data suggest that inclusion of other remote‐sensing products in addition to EVI, such as the MODIS land surface temperature (LST), may result in more robust models of carbon balance based entirely on remote‐sensing data

    Development and Extrapolation of a General Light Use Efficiency Model for the Gross Primary Production

    Get PDF
    The global carbon cycle is one of the large biogeochemical cycles spanning all living and non-living compartments of the Earth system. Against the background of accelerating global change, the scientific community is highly interested in analyzing and understanding the dynamics of the global carbon cycle and its complex feedback mechanism with the terrestrial biosphere. The international network FLUXNET was established to serve this aim with measurement towers around the globe. The overarching objective of this thesis is to exploit the powerful combination of carbon flux measurements and satellite remote sensing in order to develop a simple but robust model for the gross primary production (GPP) of vegetation stands. Measurement data from FLUXNET sites as well as remote sensing data from the NASA sensor MODIS are exploited in a data-based model development approach. The well-established concept of light use efficiency is chosen as modeling framework. As a result, a novel gross primary production model is established to quantify the carbon uptake of forests and grasslands across a broad range of climate zones. Furthermore, an extrapolation scheme is derived, with which the model parameters calibrated at FLUXNET sites can be regionalized to pave the way for spatially continuous model applications

    ESA - RESGROW: Epansion of the Market for EO Based Information Services in Renewable Energy - Biomass Energy sector

    Get PDF
    Biomass energy is of growing importance as it is widely recognised, both scientifically and politically, that the increase of atmospheric CO2 has led to an enhanced efficiency of the greenhouse effect and, as such, warrants concern for climate change. It is accepted (IPCC 2011 and just recently in the draft version of the IPCC 2013 report) that climate change is partly induced by humans notably by using fossil fuels. For reducing the use of oil or coal, biomass energy is receiving more and more attention as an additional energy source available regionally in large parts of the world. Effective management of renewable energy resources is critical for the European and the global energy supply system. The future contribution of bioenergy to the energy supply strongly depends on its availability, in other words the biomass potential. Biomass potentials are currently mainly assessed on a national to regional or on a global level, with the bulk biomass potential allocated to the whole country. With certain biomass fractions being of low energy density, transport distances and thus their spatial distribution are crucial economic and ecological factors. For other biomass fractions a super-regional or global market is envisaged. Thus spatial information on biomass potentials is vital for the further expansion of bioenergy use. This study, which is an updated version of a study carried out in 2007 in frame of the ENVISOLAR project, analyses the potential use of Earth Observation data as input for biomass models in order to assessment and manage of the biomass energy resources especially biomass potentials of agricultural and forest areas with high spatial resolution (typical 1km x 1km). In addition to a sorrow review of recent developments in data availability and approaches in comparison to its 2007’ version, this study also includes a review on approaches to directly correlate remote sensing data with biomass estimations. An overview of existing biomass models is given covering models using remote sensing data as input as well as models using only meteorological and/or management data as input. It covers the full life cycle from the planning stage to plant management and operations (Figure 1). Several groups of stakeholders were identified

    New Methods for Measurements of Photosynthesis from Space

    Get PDF
    Our ability to close the Earth's carbon budget and predict feedbacks in a warming climate depends critically on knowing where, when, and how carbon dioxide (CO2) is exchanged between the land and atmosphere. In particular, determining the rate of carbon fixation by the Earth's biosphere (commonly referred to as gross primary productivity, or GPP) and the dependence of this productivity on climate is a central goal. Historically, GPP has been inferred from spectral imagery of the land and ocean. Assessment of GPP from the color of the land and ocean requires, however, additional knowledge of the types of plants in the scene, their regulatory mechanisms, and climate variables such as soil moisture—just the independent variables of interest! Sunlight absorbed by chlorophyll in photosynthetic organisms is mostly used to drive photosynthesis, but some can also be dissipated as heat or re‐radiated at longer wavelengths (660–800 nm). This near‐infrared light re‐emitted from illuminated plants is termed solarinduced fluorescence (SIF), and it has been found to strongly correlate with GPP. To advance our understanding of SIF and its relation to GPP and environmental stress at the planetary scale, the Keck Institute for Space Studies (KISS) convened a workshop—held in Pasadena, California, in August 2012—to focus on a newly developed capacity to monitor chlorophyll fluorescence from terrestrial vegetation by satellite. This revolutionary approach for retrieving global observations of SIF promises to provide direct and spatially resolved information on GPP, an ideal bottom‐up complement to the atmospheric net CO2 exchange inversions. Workshop participants leveraged our efforts on previous studies and workshops related to the European Space Agency’s FLuorescence EXplorer (FLEX) mission concept, which had already targeted SIF for a possible satellite mission and had developed a vibrant research community with many important publications. These studies, mostly focused on landscape, canopy, and leaf‐level interpretation, provided the ground‐work for the workshop, which focused on the global carbon cycle and synergies with atmospheric net flux inversions. Workshop participants included key members of several communities: plant physiologists with experience using active fluorescence methods to quantify photosynthesis; ecologists and radiative transfer experts who are studying the challenge of scaling from the leaf to regional scales; atmospheric scientists with experience retrieving photometric information from space‐borne spectrometers; and carbon cycle experts who are integrating new observations into models that describe the exchange of carbon between the atmosphere, land and ocean. Together, the participants examined the link between “passive” fluorescence observed from orbiting spacecraft and the underlying photochemistry, plant physiology and biogeochemistry of the land and ocean. This report details the opportunity for forging a deep connection between scientists doing basic research in photosynthetic mechanisms and the more applied community doing research on the Earth System. Too often these connections have gotten lost in empiricism associated with the coarse scale of global models. Chlorophyll fluorescence has been a major tool for basic research in photosynthesis for nearly a century. SIF observations from space, although sensing a large footprint, probe molecular events occurring in the leaves below. This offers an opportunity for direct mechanistic insight that is unparalleled for studies of biology in the Earth System. A major focus of the workshop was to review the basic mechanisms that underlie this phenomenon, and to explore modeling tools that have been developed to link the biophysical and biochemical knowledge of photosynthesis with the observable—in this case, the radiance of SIF—seen by the satellite. Discussions led to the identification of areas where knowledge is still lacking. For example, the inability to do controlled illumination observations from space limits the ability to fully constrain the variables that link fluorescence and photosynthesis. Another focus of the workshop explored a “top‐down” view of the SIF signal from space. Early studies clearly identified a strong correlation between the strength of this signal and our best estimate of the rate of photosynthesis (GPP) over the globe. New studies show that this observation provides improvements over conventional reflectance‐based remote sensing in detecting seasonal and environmental (particularly drought related) modulation of photosynthesis. Apparently SIF responds much more quickly and with greater dynamic range than typical greenness indices when GPP is perturbed. However, discussions at the workshop also identified areas where top‐down analysis seemed to be “out in front” of mechanistic studies. For example, changes in SIF based on changes in canopy light interception and the light use efficiency of the canopy, both of which occur in response to drought, are assumed equivalent in the top‐down analysis, but the mechanistic justification for this is still lacking from the bottom‐up side. Workshop participants considered implications of these mechanistic and empirical insights for large‐scale models of the carbon cycle and biogeochemistry, and also made progress toward incorporating SIF as a simulated output in land surface models used in global and regional‐scale analysis of the carbon cycle. Comparison of remotely sensed SIF with modelsimulated SIF may open new possibilities for model evaluation and data assimilation, perhaps leading to better modeling tools for analysis of the other retrieval from GOSAT satellite, atmospheric CO2 concentration. Participants also identified another application for SIF: a linkage to the physical climate system arising from the ability to better identify regional development of plant water stress. Decreases in transpiration over large areas of a continent are implicated in the development and “locking‐in” of drought conditions. These discussions also identified areas where current land surface models need to be improved in order to enable this research. Specifically, the radiation transport treatments need dramatic overhauls to correctly simulate SIF. Finally, workshop participants explored approaches for retrieval of SIF from satellite and ground‐based sensors. The difficulty of resolving SIF from the overwhelming flux of reflected sunlight in the spectral region where fluorescence occurs was once a major impediment to making this measurement. Placement of very high spectral resolution spectrometers on GOSAT (and other greenhouse gas–sensing satellites) has enabled retrievals based on infilling of solar Fraunhofer lines, enabling accurate fluorescence measurements even in the presence of moderately thick clouds. Perhaps the most interesting challenge here is that there is no readily portable ground‐based instrumentation that even approaches the capability of GOSAT and other planned greenhouse gas satellites. This strongly limits scientists’ ability to conduct ground‐based studies to characterize the footprint of the GOSAT measurement and to conduct studies of radiation transport needed to interpret SIF measurement. The workshop results represent a snapshot of the state of knowledge in this area. New research activities have sprung from the deliberations during the workshop, with publications to follow. The introduction of this new measurement technology to a wide slice of the community of Earth System Scientists will help them understand how this new technology could help solve problems in their research, address concerns about the interpretation, identify future research needs, and elicit support of the wider community for research needed to support this observation. Somewhat analogous to the original discovery that vegetation indices could be derived from satellite measurements originally intended to detect clouds, the GOSAT observations are a rare case in which a (fortuitous) global satellite dataset becomes available before the research community had a consolidated understanding on how (beyond an empirical correlation) it could be applied to understanding the underlying processes. Vegetation indices have since changed the way we see the global biosphere, and the workshop participants envision that fluorescence can perform the next indispensable step by complementing these measurements with independent estimates that are more indicative of actual (as opposed to potential) photosynthesis. Apart from the potential FLEX mission, no dedicated satellite missions are currently planned. OCO‐2 and ‐3 will provide much more data than GOSAT, but will still not allow for regional studies due to the lack of mapping capabilities. Geostationary observations may even prove most useful, as they could track fluorescence over the course of the day and clearly identify stress‐related down‐regulation of photosynthesis. Retrieval of fluorescence on the global scale should be recognized as a valuable tool; it can bring the same quantum leap in our understanding of the global carbon cycle as vegetation indices once did

    ENHANCING CONSERVATION WITH HIGH RESOLUTION PRODUCTIVITY DATASETS FOR THE CONTERMINOUS UNITED STATES

    Get PDF
    Human driven alteration of the earth’s terrestrial surface is accelerating through land use changes, intensification of human activity, climate change, and other anthropogenic pressures. These changes occur at broad spatio-temporal scales, challenging our ability to effectively monitor and assess the impacts and subsequent conservation strategies. While satellite remote sensing (SRS) products enable monitoring of the earth’s terrestrial surface continuously across space and time, the practical applications for conservation and management of these products are limited. Often the processes driving ecological change occur at fine spatial resolutions and are undetectable given the resolution of available datasets. Additionally, the links between SRS data and ecologically meaningful metrics are weak. Recent advances in cloud computing technology along with the growing record of high resolution SRS data enable the development of SRS products that quantify ecologically meaningful variables at relevant scales applicable for conservation and management. The focus of my dissertation is to improve the applicability of terrestrial gross and net primary productivity (GPP/NPP) datasets for the conterminous United States (CONUS). In chapter one, I develop a framework for creating high resolution datasets of vegetation dynamics. I use the entire archive of Landsat 5, 7, and 8 surface reflectance data and a novel gap filling approach to create spatially continuous 30 m, 16-day composites of the normalized difference vegetation index (NDVI) from 1986 to 2016. In chapter two, I integrate this with other high resolution datasets and the MOD17 algorithm to create the first high resolution GPP and NPP datasets for CONUS. I demonstrate the applicability of these products for conservation and management, showing the improvements beyond currently available products. In chapter three, I utilize this dataset to evaluate the relationships between land ownership and terrestrial production across the CONUS domain. The main results of this work are three publically available datasets: 1) 30 m Landsat NDVI; 2) 250 m MODIS based GPP and NPP; and 3) 30 m Landsat based GPP and NPP. My goal is that these products prove useful for the wider scientific, conservation, and land management communities as we continue to strive for better conservation and management practices
    • 

    corecore