48 research outputs found

    Register automata with linear arithmetic

    Full text link
    We propose a novel automata model over the alphabet of rational numbers, which we call register automata over the rationals (RA-Q). It reads a sequence of rational numbers and outputs another rational number. RA-Q is an extension of the well-known register automata (RA) over infinite alphabets, which are finite automata equipped with a finite number of registers/variables for storing values. Like in the standard RA, the RA-Q model allows both equality and ordering tests between values. It, moreover, allows to perform linear arithmetic between certain variables. The model is quite expressive: in addition to the standard RA, it also generalizes other well-known models such as affine programs and arithmetic circuits. The main feature of RA-Q is that despite the use of linear arithmetic, the so-called invariant problem---a generalization of the standard non-emptiness problem---is decidable. We also investigate other natural decision problems, namely, commutativity, equivalence, and reachability. For deterministic RA-Q, commutativity and equivalence are polynomial-time inter-reducible with the invariant problem

    Border Basis relaxation for polynomial optimization

    Get PDF
    A relaxation method based on border basis reduction which improves the efficiency of Lasserre's approach is proposed to compute the optimum of a polynomial function on a basic closed semi algebraic set. A new stopping criterion is given to detect when the relaxation sequence reaches the minimum, using a sparse flat extension criterion. We also provide a new algorithm to reconstruct a finite sum of weighted Dirac measures from a truncated sequence of moments, which can be applied to other sparse reconstruction problems. As an application, we obtain a new algorithm to compute zero-dimensional minimizer ideals and the minimizer points or zero-dimensional G-radical ideals. Experimentations show the impact of this new method on significant benchmarks.Comment: Accepted for publication in Journal of Symbolic Computatio

    Exact relaxation for polynomial optimization on semi-algebraic sets

    Get PDF
    In this paper, we study the problem of computing by relaxation hierarchies the infimum of a real polynomial function f on a closed basic semialgebraic set and the points where this infimum is reached, if they exist. We show that when the infimum is reached, a relaxation hierarchy constructed from the Karush-Kuhn-Tucker ideal is always exact and that the vanishing ideal of the KKT minimizer points is generated by the kernel of the associated moment matrix in that degree, even if this ideal is not zero-dimensional. We also show that this relaxation allows to detect when there is no KKT minimizer. We prove that the exactness of the relaxation depends only on the real points which satisfy these constraints.This exploits representations of positive polynomials as elementsof the preordering modulo the KKT ideal, which only involves polynomials in the initial set of variables. Applications to global optimization, optimization on semialgebraic sets defined by regular sets of constraints, optimization on finite semialgebraic sets, real radical computation are given

    Convex computation of maximal Lyapunov exponents

    Full text link
    We describe an approach for finding upper bounds on an ODE dynamical system's maximal Lyapunov exponent among all trajectories in a specified set. A minimization problem is formulated whose infimum is equal to the maximal Lyapunov exponent, provided that trajectories of interest remain in a compact set. The minimization is over auxiliary functions that are defined on the state space and subject to a pointwise inequality. In the polynomial case -- i.e., when the ODE's right-hand side is polynomial, the set of interest can be specified by polynomial inequalities or equalities, and auxiliary functions are sought among polynomials -- the minimization can be relaxed into a computationally tractable polynomial optimization problem subject to sum-of-squares constraints. Enlarging the spaces of polynomials over which auxiliary functions are sought yields optimization problems of increasing computational cost whose infima converge from above to the maximal Lyapunov exponent, at least when the set of interest is compact. For illustration, we carry out such polynomial optimization computations for two chaotic examples: the Lorenz system and the H\'enon-Heiles system. The computed upper bounds converge as polynomial degrees are raised, and in each example we obtain a bound that is sharp to at least five digits. This sharpness is confirmed by finding trajectories whose leading Lyapunov exponents approximately equal the upper bounds.Comment: 29 page

    On Newton polytopes and growth properties of multivariate polynomials

    Get PDF
    Many interesting properties of polynomials are closely related to the geometry of their Newton polytopes. In this dissertation thesis, we analyze the growth properties of real multivariate polynomials in terms of their so-called Newton polytopes at infinity. We show some applications of our results, relate them to the existing literature and illustrate them with several examples

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 13371 and 13372 constitutes the refereed proceedings of the 34rd International Conference on Computer Aided Verification, CAV 2022, which was held in Haifa, Israel, in August 2022. The 40 full papers presented together with 9 tool papers and 2 case studies were carefully reviewed and selected from 209 submissions. The papers were organized in the following topical sections: Part I: Invited papers; formal methods for probabilistic programs; formal methods for neural networks; software Verification and model checking; hyperproperties and security; formal methods for hardware, cyber-physical, and hybrid systems. Part II: Probabilistic techniques; automata and logic; deductive verification and decision procedures; machine learning; synthesis and concurrency. This is an open access book
    corecore