3,599 research outputs found

    Deciding first-order properties of nowhere dense graphs

    Full text link
    Nowhere dense graph classes, introduced by Nesetril and Ossona de Mendez, form a large variety of classes of "sparse graphs" including the class of planar graphs, actually all classes with excluded minors, and also bounded degree graphs and graph classes of bounded expansion. We show that deciding properties of graphs definable in first-order logic is fixed-parameter tractable on nowhere dense graph classes. At least for graph classes closed under taking subgraphs, this result is optimal: it was known before that for all classes C of graphs closed under taking subgraphs, if deciding first-order properties of graphs in C is fixed-parameter tractable, then C must be nowhere dense (under a reasonable complexity theoretic assumption). As a by-product, we give an algorithmic construction of sparse neighbourhood covers for nowhere dense graphs. This extends and improves previous constructions of neighbourhood covers for graph classes with excluded minors. At the same time, our construction is considerably simpler than those. Our proofs are based on a new game-theoretic characterisation of nowhere dense graphs that allows for a recursive version of locality-based algorithms on these classes. On the logical side, we prove a "rank-preserving" version of Gaifman's locality theorem.Comment: 30 page

    Testing first-order properties for subclasses of sparse graphs

    Get PDF
    We present a linear-time algorithm for deciding first-order (FO) properties in classes of graphs with bounded expansion, a notion recently introduced by Nesetril and Ossona de Mendez. This generalizes several results from the literature, because many natural classes of graphs have bounded expansion: graphs of bounded tree-width, all proper minor-closed classes of graphs, graphs of bounded degree, graphs with no subgraph isomorphic to a subdivision of a fixed graph, and graphs that can be drawn in a fixed surface in such a way that each edge crosses at most a constant number of other edges. We deduce that there is an almost linear-time algorithm for deciding FO properties in classes of graphs with locally bounded expansion. More generally, we design a dynamic data structure for graphs belonging to a fixed class of graphs of bounded expansion. After a linear-time initialization the data structure allows us to test an FO property in constant time, and the data structure can be updated in constant time after addition/deletion of an edge, provided the list of possible edges to be added is known in advance and their simultaneous addition results in a graph in the class. All our results also hold for relational structures and are based on the seminal result of Nesetril and Ossona de Mendez on the existence of low tree-depth colorings

    Testing first-order properties for subclasses of sparse graphs

    Get PDF
    We present a linear-time algorithm for deciding first-order (FO) properties in classes of graphs with bounded expansion, a notion recently introduced by NeÅ”etřil and Ossona de Mendez. This generalizes several results from the literature, because many natural classes of graphs have bounded expansion: graphs of bounded tree-width, all proper minor-closed classes of graphs, graphs of bounded degree, graphs with no subgraph isomorphic to a subdivision of a fixed graph, and graphs that can be drawn in a fixed surface in such a way that each edge crosses at most a constant number of other edges. We deduce that there is an almost linear-time algorithm for deciding FO properties in classes of graphs with locally bounded expansion. More generally, we design a dynamic data structure for graphs belonging to a fixed class of graphs of bounded expansion. After a linear-time initialization the data structure allows us to test an FO property in constant time, and the data structure can be updated in constant time after addition/deletion of an edge, provided the list of possible edges to be added is known in advance and their simultaneous addition results in a graph in the class. All our results also hold for relational structures and are based on the seminal result of NeÅ”etřil and Ossona de Mendez on the existence of low tree-depth colorings

    Successor-Invariant First-Order Logic on Graphs with Excluded Topological Subgraphs

    Get PDF
    We show that the model-checking problem for successor-invariant first-order logic is fixed-parameter tractable on graphs with excluded topological subgraphs when parameterised by both the size of the input formula and the size of the exluded topological subgraph. Furthermore, we show that model-checking for order-invariant first-order logic is tractable on coloured posets of bounded width, parameterised by both the size of the input formula and the width of the poset. Our result for successor-invariant FO extends previous results for this logic on planar graphs (Engelmann et al., LICS 2012) and graphs with excluded minors (Eickmeyer et al., LICS 2013), further narrowing the gap between what is known for FO and what is known for successor-invariant FO. The proof uses Grohe and Marx's structure theorem for graphs with excluded topological subgraphs. For order-invariant FO we show that Gajarsk\'y et al.'s recent result for FO carries over to order-invariant FO

    First-Order Query Evaluation with Cardinality Conditions

    Full text link
    We study an extension of first-order logic that allows to express cardinality conditions in a similar way as SQL's COUNT operator. The corresponding logic FOC(P) was introduced by Kuske and Schweikardt (LICS'17), who showed that query evaluation for this logic is fixed-parameter tractable on classes of structures (or databases) of bounded degree. In the present paper, we first show that the fixed-parameter tractability of FOC(P) cannot even be generalised to very simple classes of structures of unbounded degree such as unranked trees or strings with a linear order relation. Then we identify a fragment FOC1(P) of FOC(P) which is still sufficiently strong to express standard applications of SQL's COUNT operator. Our main result shows that query evaluation for FOC1(P) is fixed-parameter tractable with almost linear running time on nowhere dense classes of structures. As a corollary, we also obtain a fixed-parameter tractable algorithm for counting the number of tuples satisfying a query over nowhere dense classes of structures
    • ā€¦
    corecore