749 research outputs found

    On Hermite-Birkhoff interpolation

    Get PDF

    Intersection problem for Droms RAAGs

    Get PDF
    We solve the subgroup intersection problem (SIP) for any RAAG G of Droms type (i.e., with defining graph not containing induced squares or paths of length 3): there is an algorithm which, given finite sets of generators for two subgroups H,K of G, decides whether HKH \cap K is finitely generated or not, and, in the affirmative case, it computes a set of generators for HKH \cap K. Taking advantage of the recursive characterization of Droms groups, the proof consists in separately showing that the solvability of SIP passes through free products, and through direct products with free-abelian groups. We note that most of RAAGs are not Howson, and many (e.g. F_2 x F_2) even have unsolvable SIP.Comment: 33 pages, 12 figures (revised following the referee's suggestions

    Keynote: The first-order logic of signals

    Get PDF
    Formalizing properties of systems with continuous dynamics is a challenging task. In this paper, we propose a formal framework for specifying and monitoring rich temporal properties of real-valued signals. We introduce signal first-order logic (SFO) as a specification language that combines first-order logic with linear-real arithmetic and unary function symbols interpreted as piecewise-linear signals. We first show that while the satisfiability problem for SFO is undecidable, its membership and monitoring problems are decidable. We develop an offline monitoring procedure for SFO that has polynomial complexity in the size of the input trace and the specification, for a fixed number of quantifiers and function symbols. We show that the algorithm has computation time linear in the size of the input trace for the important fragment of bounded-response specifications interpreted over input traces with finite variability. We can use our results to extend signal temporal logic with first-order quantifiers over time and value parameters, while preserving its efficient monitoring. We finally demonstrate the practical appeal of our logic through a case study in the micro-electronics domain
    corecore