619 research outputs found

    Polynomial-Time Amoeba Neighborhood Membership and Faster Localized Solving

    Full text link
    We derive efficient algorithms for coarse approximation of algebraic hypersurfaces, useful for estimating the distance between an input polynomial zero set and a given query point. Our methods work best on sparse polynomials of high degree (in any number of variables) but are nevertheless completely general. The underlying ideas, which we take the time to describe in an elementary way, come from tropical geometry. We thus reduce a hard algebraic problem to high-precision linear optimization, proving new upper and lower complexity estimates along the way.Comment: 15 pages, 9 figures. Submitted to a conference proceeding

    The Polyhedron-Hitting Problem

    Full text link
    We consider polyhedral versions of Kannan and Lipton's Orbit Problem (STOC '80 and JACM '86)---determining whether a target polyhedron V may be reached from a starting point x under repeated applications of a linear transformation A in an ambient vector space Q^m. In the context of program verification, very similar reachability questions were also considered and left open by Lee and Yannakakis in (STOC '92). We present what amounts to a complete characterisation of the decidability landscape for the Polyhedron-Hitting Problem, expressed as a function of the dimension m of the ambient space, together with the dimension of the polyhedral target V: more precisely, for each pair of dimensions, we either establish decidability, or show hardness for longstanding number-theoretic open problems

    Efficient enumeration of solutions produced by closure operations

    Full text link
    In this paper we address the problem of generating all elements obtained by the saturation of an initial set by some operations. More precisely, we prove that we can generate the closure of a boolean relation (a set of boolean vectors) by polymorphisms with a polynomial delay. Therefore we can compute with polynomial delay the closure of a family of sets by any set of "set operations": union, intersection, symmetric difference, subsets, supersets …\dots). To do so, we study the MembershipFMembership_{\mathcal{F}} problem: for a set of operations F\mathcal{F}, decide whether an element belongs to the closure by F\mathcal{F} of a family of elements. In the boolean case, we prove that MembershipFMembership_{\mathcal{F}} is in P for any set of boolean operations F\mathcal{F}. When the input vectors are over a domain larger than two elements, we prove that the generic enumeration method fails, since MembershipFMembership_{\mathcal{F}} is NP-hard for some F\mathcal{F}. We also study the problem of generating minimal or maximal elements of closures and prove that some of them are related to well known enumeration problems such as the enumeration of the circuits of a matroid or the enumeration of maximal independent sets of a hypergraph. This article improves on previous works of the same authors.Comment: 30 pages, 1 figure. Long version of the article arXiv:1509.05623 of the same name which appeared in STACS 2016. Final version for DMTCS journa

    Keynote: The first-order logic of signals

    Get PDF
    Formalizing properties of systems with continuous dynamics is a challenging task. In this paper, we propose a formal framework for specifying and monitoring rich temporal properties of real-valued signals. We introduce signal first-order logic (SFO) as a specification language that combines first-order logic with linear-real arithmetic and unary function symbols interpreted as piecewise-linear signals. We first show that while the satisfiability problem for SFO is undecidable, its membership and monitoring problems are decidable. We develop an offline monitoring procedure for SFO that has polynomial complexity in the size of the input trace and the specification, for a fixed number of quantifiers and function symbols. We show that the algorithm has computation time linear in the size of the input trace for the important fragment of bounded-response specifications interpreted over input traces with finite variability. We can use our results to extend signal temporal logic with first-order quantifiers over time and value parameters, while preserving its efficient monitoring. We finally demonstrate the practical appeal of our logic through a case study in the micro-electronics domain

    Computational Arithmetic Geometry I: Sentences Nearly in the Polynomial Hierarchy

    Get PDF
    We consider the average-case complexity of some otherwise undecidable or open Diophantine problems. More precisely, consider the following: (I) Given a polynomial f in Z[v,x,y], decide the sentence \exists v \forall x \exists y f(v,x,y)=0, with all three quantifiers ranging over N (or Z). (II) Given polynomials f_1,...,f_m in Z[x_1,...,x_n] with m>=n, decide if there is a rational solution to f_1=...=f_m=0. We show that, for almost all inputs, problem (I) can be done within coNP. The decidability of problem (I), over N and Z, was previously unknown. We also show that the Generalized Riemann Hypothesis (GRH) implies that, for almost all inputs, problem (II) can be done via within the complexity class PP^{NP^NP}, i.e., within the third level of the polynomial hierarchy. The decidability of problem (II), even in the case m=n=2, remains open in general. Along the way, we prove results relating polynomial system solving over C, Q, and Z/pZ. We also prove a result on Galois groups associated to sparse polynomial systems which may be of independent interest. A practical observation is that the aforementioned Diophantine problems should perhaps be avoided in the construction of crypto-systems.Comment: Slight revision of final journal version of an extended abstract which appeared in STOC 1999. This version includes significant corrections and improvements to various asymptotic bounds. Needs cjour.cls to compil
    • …
    corecore