24,531 research outputs found

    A Multifunctional Processing Board for the Fast Track Trigger of the H1 Experiment

    Get PDF
    The electron-proton collider HERA is being upgraded to provide higher luminosity from the end of the year 2001. In order to enhance the selectivity on exclusive processes a Fast Track Trigger (FTT) with high momentum resolution is being built for the H1 Collaboration. The FTT will perform a 3-dimensional reconstruction of curved tracks in a magnetic field of 1.1 Tesla down to 100 MeV in transverse momentum. It is able to reconstruct up to 48 tracks within 23 mus in a high track multiplicity environment. The FTT consists of two hardware levels L1, L2 and a third software level. Analog signals of 450 wires are digitized at the first level stage followed by a quick lookup of valid track segment patterns. For the main processing tasks at the second level such as linking, fitting and deciding, a multifunctional processing board has been developed by the ETH Zurich in collaboration with Supercomputing Systems (Zurich). It integrates a high-density FPGA (Altera APEX 20K600E) and four floating point DSPs (Texas Instruments TMS320C6701). This presentation will mainly concentrate on second trigger level hardware aspects and on the implementation of the algorithms used for linking and fitting. Emphasis is especially put on the integrated CAM (content addressable memory) functionality of the FPGA, which is ideally suited for implementing fast search tasks like track segment linking.Comment: 6 pages, 4 figures, submitted to TN

    Daytime REM sleep affects emotional experience but not decision choices in moral dilemmas

    Get PDF
    Moral decision-making depends on the interaction between automatic emotional responses and rational cognitive control. A natural emotional regulator state seems to be sleep, in particular rapid eye movement (REM) sleep. We tested the impact of daytime sleep, either with or without REM, on moral decision. Sixty participants were presented with 12 sacrificial (6 Footbridge-and 6 Trolley-type) and 8 everyday-type moral dilemmas at 9 AM and at 5 PM. In sacrificial dilemmas, participants had to decide whether or not to kill one person to save more people (utilitarian choice), and to judge how morally acceptable the proposed choice was. In everyday-type dilemmas, participants had to decide whether to endorse moral violations involving dishonest behavior. At 12 PM, 40 participants took a 120-min nap (17 with REM and 23 with NREM only) while 20 participants remained awake. Mixed-model analysis revealed that participants judged the utilitarian choice as less morally acceptable in the afternoon, irrespective of sleep. We also observed a negative association between theta activity during REM and increased self-rated unpleasantness during moral decisions. Nevertheless, moral decision did not change across the day and between groups. These results suggest that although both time and REM sleep may affect the evaluation of a moral situation, these factors did not ultimately impact the individual moral choices

    Asymptotic Signal Detection Rates with 1-bit Array Measurements

    Full text link
    This work considers detecting the presence of a band-limited random radio source using an antenna array featuring a low-complexity digitization process with single-bit output resolution. In contrast to high-resolution analog-to-digital conversion, such a direct transformation of the analog radio measurements to a binary representation can be implemented hardware and energy-efficient. However, the probabilistic model of the binary receive data becomes challenging. Therefore, we first consider the Neyman-Pearson test within generic exponential families and derive the associated analytic detection rate expressions. Then we use a specific replacement model for the binary likelihood and study the achievable detection performance with 1- bit radio array measurements. As an application, we explore the capability of a low-complexity GPS spectrum monitoring system with different numbers of antennas and different observation intervals. Results show that with a moderate amount of binary sensors it is possible to reliably perform the monitoring task

    IR-UWB Detection and Fusion Strategies using Multiple Detector Types

    Full text link
    Optimal detection of ultra wideband (UWB) pulses in a UWB transceiver employing multiple detector types is proposed and analyzed in this paper. We propose several fusion techniques for fusing decisions made by individual IR-UWB detectors. We assess the performance of these fusion techniques for commonly used detector types like matched filter, energy detector and amplitude detector. In order to perform this, we derive the detection performance equation for each of the detectors in terms of false alarm rate, shape of the pulse and number of UWB pulses used in the detection and apply these in the fusion algorithms. We show that the performance can be improved approximately by 4 dB in terms of signal to noise ratio (SNR) for perfect detectability of a UWB signal in a practical scenario by fusing the decisions from individual detectors.Comment: Accepted for publishing in IEEE WCNC 201

    Logic Programming and Logarithmic Space

    Full text link
    We present an algebraic view on logic programming, related to proof theory and more specifically linear logic and geometry of interaction. Within this construction, a characterization of logspace (deterministic and non-deterministic) computation is given via a synctactic restriction, using an encoding of words that derives from proof theory. We show that the acceptance of a word by an observation (the counterpart of a program in the encoding) can be decided within logarithmic space, by reducing this problem to the acyclicity of a graph. We show moreover that observations are as expressive as two-ways multi-heads finite automata, a kind of pointer machines that is a standard model of logarithmic space computation

    Introducing Quantified Cuts in Logic with Equality

    Full text link
    Cut-introduction is a technique for structuring and compressing formal proofs. In this paper we generalize our cut-introduction method for the introduction of quantified lemmas of the form ∀x.A\forall x.A (for quantifier-free AA) to a method generating lemmas of the form ∀x1…∀xn.A\forall x_1\ldots\forall x_n.A. Moreover, we extend the original method to predicate logic with equality. The new method was implemented and applied to the TSTP proof database. It is shown that the extension of the method to handle equality and quantifier-blocks leads to a substantial improvement of the old algorithm
    • …
    corecore