2 research outputs found

    On the Parameterized Complexity of the Expected Coverage Problem

    Get PDF
    The MAXIMUM COVERING LOCATION PROBLEM (MCLP) is a well-studied problem in the field of operations research. Given a network with positive or negative demands on the nodes, a positive integer k, the MCLP seeks to find k potential facility centers in the network such that the neighborhood coverage is maximized. We study the variant of MCLP where edges of the network are subject to random failures due to some disruptive events. One of the popular models capturing the unreliable nature of the facility location is the linear reliability ordering (LRO) model. In this model, with every edge e of the network, we associate its survival probability 0 ≤ pe ≤ 1, or equivalently, its failure probability 1 − pe. The failure correlation in LRO is the following: If an edge e fails then every edge e′ with pe′≤pe surely fails. The task is to identify the positions of k facilities that maximize the expected coverage. We refer to this problem as EXPECTED COVERAGE problem. We study the EXPECTED COVERAGE problem from the parameterized complexity perspective and obtain the following results. 1. For the parameter pathwidth, we show that the EXPECTED COVERAGE problem is W[1]-hard. We find this result a bit surprising, because the variant of the problem with non-negative demands is fixed-parameter tractable (FPT) parameterized by the treewidth of the input graph. 2. We complement the lower bound by the proof that EXPECTED COVERAGE is FPT being parameterized by the treewidth and the maximum vertex degree. We give an algorithm that solves the problem in time 2O(twlogΔ)nO(1), where tw is the treewidth, Δ is the maximum vertex degree, and n the number of vertices of the input graph. In particular, since Δ ≤ n, it means the problem is solvable in time nO(tw), that is, is in XP parameterized by treewidth.publishedVersio

    Budgeted Dominating Sets in Uncertain Graphs

    Get PDF
    We study the Budgeted Dominating Set (BDS) problem on uncertain graphs, namely, graphs with a probability distribution p associated with the edges, such that an edge e exists in the graph with probability p(e). The input to the problem consists of a vertex-weighted uncertain graph ? = (V, E, p, ?) and an integer budget (or solution size) k, and the objective is to compute a vertex set S of size k that maximizes the expected total domination (or total weight) of vertices in the closed neighborhood of S. We refer to the problem as the Probabilistic Budgeted Dominating Set (PBDS) problem. In this article, we present the following results on the complexity of the PBDS problem. 1) We show that the PBDS problem is NP-complete even when restricted to uncertain trees of diameter at most four. This is in sharp contrast with the well-known fact that the BDS problem is solvable in polynomial time in trees. We further show that PBDS is ?[1]-hard for the budget parameter k, and under the Exponential time hypothesis it cannot be solved in n^o(k) time. 2) We show that if one is willing to settle for (1-?) approximation, then there exists a PTAS for PBDS on trees. Moreover, for the scenario of uniform edge-probabilities, the problem can be solved optimally in polynomial time. 3) We consider the parameterized complexity of the PBDS problem, and show that Uni-PBDS (where all edge probabilities are identical) is ?[1]-hard for the parameter pathwidth. On the other hand, we show that it is FPT in the combined parameters of the budget k and the treewidth. 4) Finally, we extend some of our parameterized results to planar and apex-minor-free graphs. Our first hardness proof (Thm. 1) makes use of the new problem of k-Subset ?-? Maximization (k-SPM), which we believe is of independent interest. We prove its NP-hardness by a reduction from the well-known k-SUM problem, presenting a close relationship between the two problems
    corecore