41 research outputs found

    Unary Pushdown Automata and Straight-Line Programs

    Full text link
    We consider decision problems for deterministic pushdown automata over a unary alphabet (udpda, for short). Udpda are a simple computation model that accept exactly the unary regular languages, but can be exponentially more succinct than finite-state automata. We complete the complexity landscape for udpda by showing that emptiness (and thus universality) is P-hard, equivalence and compressed membership problems are P-complete, and inclusion is coNP-complete. Our upper bounds are based on a translation theorem between udpda and straight-line programs over the binary alphabet (SLPs). We show that the characteristic sequence of any udpda can be represented as a pair of SLPs---one for the prefix, one for the lasso---that have size linear in the size of the udpda and can be computed in polynomial time. Hence, decision problems on udpda are reduced to decision problems on SLPs. Conversely, any SLP can be converted in logarithmic space into a udpda, and this forms the basis for our lower bound proofs. We show coNP-hardness of the ordered matching problem for SLPs, from which we derive coNP-hardness for inclusion. In addition, we complete the complexity landscape for unary nondeterministic pushdown automata by showing that the universality problem is Π2P\Pi_2 \mathrm P-hard, using a new class of integer expressions. Our techniques have applications beyond udpda. We show that our results imply Π2P\Pi_2 \mathrm P-completeness for a natural fragment of Presburger arithmetic and coNP lower bounds for compressed matching problems with one-character wildcards

    Decision problems for Clark-congruential languages

    Get PDF
    A common question when studying a class of context-free grammars is whether equivalence is decidable within this class. We answer this question positively for the class of Clark-congruential grammars, which are of interest to grammatical inference. We also consider the problem of checking whether a given CFG is Clark-congruential, and show that it is decidable given that the CFG is a DCFG.Comment: Version 2 incorporates revisions prompted by the comments of anonymous referees at ICGI and LearnAu

    Equivalence of Deterministic One-Counter Automata is NL-complete

    Full text link
    We prove that language equivalence of deterministic one-counter automata is NL-complete. This improves the superpolynomial time complexity upper bound shown by Valiant and Paterson in 1975. Our main contribution is to prove that two deterministic one-counter automata are inequivalent if and only if they can be distinguished by a word of length polynomial in the size of the two input automata

    Bisimulation Equivalence of First-Order Grammars is ACKERMANN-Complete

    Full text link
    Checking whether two pushdown automata with restricted silent actions are weakly bisimilar was shown decidable by S\'enizergues (1998, 2005). We provide the first known complexity upper bound for this famous problem, in the equivalent setting of first-order grammars. This ACKERMANN upper bound is optimal, and we also show that strong bisimilarity is primitive-recursive when the number of states of the automata is fixed

    Bisimulation Equivalence of Pushdown Automata Is Ackermann-Complete

    Get PDF

    Bisimilarity of Pushdown Systems is Nonelementary

    Full text link
    Given two pushdown systems, the bisimilarity problem asks whether they are bisimilar. While this problem is known to be decidable our main result states that it is nonelementary, improving EXPTIME-hardness, which was the previously best known lower bound for this problem. Our lower bound result holds for normed pushdown systems as well

    Deciding Semantic Finiteness of Pushdown Processes and First-Order Grammars w.r.t. Bisimulation Equivalence

    Get PDF
    The problem if a given configuration of a pushdown automaton (PDA) is bisimilar with some (unspecified) finite-state process is shown to be decidable. The decidability is proven in the framework of first-order grammars, which are given by finite sets of labelled rules that rewrite roots of first-order terms. The framework is equivalent to PDA where also deterministic popping epsilon-steps are allowed, i.e. to the model for which Senizergues showed an involved procedure deciding bisimilarity (FOCS 1998). Such a procedure is here used as a black-box part of the algorithm. For deterministic PDA the regularity problem was shown decidable by Valiant (JACM 1975) but the decidability question for nondeterministic PDA, answered positively here, had been open (as indicated, e.g., by Broadbent and Goeller, FSTTCS 2012)

    Fragments of ML Decidable by Nested Data Class Memory Automata

    Full text link
    The call-by-value language RML may be viewed as a canonical restriction of Standard ML to ground-type references, augmented by a "bad variable" construct in the sense of Reynolds. We consider the fragment of (finitary) RML terms of order at most 1 with free variables of order at most 2, and identify two subfragments of this for which we show observational equivalence to be decidable. The first subfragment consists of those terms in which the P-pointers in the game semantic representation are determined by the underlying sequence of moves. The second subfragment consists of terms in which the O-pointers of moves corresponding to free variables in the game semantic representation are determined by the underlying moves. These results are shown using a reduction to a form of automata over data words in which the data values have a tree-structure, reflecting the tree-structure of the threads in the game semantic plays. In addition we show that observational equivalence is undecidable at every third- or higher-order type, every second-order type which takes at least two first-order arguments, and every second-order type (of arity greater than one) that has a first-order argument which is not the final argument
    corecore