354 research outputs found

    Deciding Confluence and Normal Form Properties of Ground Term Rewrite Systems Efficiently

    Full text link
    It is known that the first-order theory of rewriting is decidable for ground term rewrite systems, but the general technique uses tree automata and often takes exponential time. For many properties, including confluence (CR), uniqueness of normal forms with respect to reductions (UNR) and with respect to conversions (UNC), polynomial time decision procedures are known for ground term rewrite systems. However, this is not the case for the normal form property (NFP). In this work, we present a cubic time algorithm for NFP, an almost cubic time algorithm for UNR, and an almost linear time algorithm for UNC, improving previous bounds. We also present a cubic time algorithm for CR

    The exact hardness of deciding derivational and runtime complexity

    Get PDF
    For any class C of computable total functions satisfying some mild conditions, we prove that the following decision problems are complete for the existential part of the second level of the arithmetical hierarchy: (A) Deciding whether a term rewriting system (TRS for short) has runtime complexity bounded by a function in C. (B) Deciding whether a TRS has derivational complexity bounded by a function in C. In particular, the problems of deciding whether a TRS has polynomially (exponentially) bounded runtime complexity (respectively derivational complexity) are complete for this level of the arithmetical ierarchy. This places deciding polynomial derivational or runtime complexity of TRSs at the same level as deciding nontermination or nonconfluence of TRSs. We proceed to show that the related problem of deciding for a single computable function f whether a TRS has runtime complexity bounded from above by f is complete for the universal part of the first level of the arithmetical hierarchy. We further prove that analysing the implicit complexity of TRSs is even more difficult: The problem of deciding whether a TRS accepts a language of terms accepted by some TRS with runtime complexity bounded by a function in C is complete for the existential part of the third level of the arithmetical hierarchy. All of our results are easily extended to the notion of minimal complexity (where the length of shortest reductions to normal form is considered) and remain valid under any computable reduction strategy. Finally, all results hold both for unrestricted TRSs and for the class of orthogonal TRSs

    A general framework for Noetherian well ordered polynomial reductions

    Get PDF
    Polynomial reduction is one of the main tools in computational algebra with innumerable applications in many areas, both pure and applied. Since many years both the theory and an efficient design of the related algorithm have been solidly established. This paper presents a general definition of polynomial reduction structure, studies its features and highlights the aspects needed in order to grant and to efficiently test the main properties (noetherianity, confluence, ideal membership). The most significant aspect of this analysis is a negative reappraisal of the role of the notion of term order which is usually considered a central and crucial tool in the theory. In fact, as it was already established in the computer science context in relation with termination of algorithms, most of the properties can be obtained simply considering a well-founded ordering, while the classical requirement that it be preserved by multiplication is irrelevant. The last part of the paper shows how the polynomial basis concepts present in literature are interpreted in our language and their properties are consequences of the general results established in the first part of the paper.Comment: 36 pages. New title and substantial improvements to the presentation according to the comments of the reviewer

    Complexity Hierarchies and Higher-Order Cons-Free Rewriting

    Get PDF
    Constructor rewriting systems are said to be cons-free if, roughly, constructor terms in the right-hand sides of rules are subterms of constructor terms in the left-hand side; the computational intuition is that rules cannot build new data structures. It is well-known that cons-free programming languages can be used to characterize computational complexity classes, and that cons-free first-order term rewriting can be used to characterize the set of polynomial-time decidable sets. We investigate cons-free higher-order term rewriting systems, the complexity classes they characterize, and how these depend on the order of the types used in the systems. We prove that, for every k ≥\geq 1, left-linear cons-free systems with type order k characterize Ek^kTIME if arbitrary evaluation is used (i.e., the system does not have a fixed reduction strategy). The main difference with prior work in implicit complexity is that (i) our results hold for non-orthogonal term rewriting systems with possible rule overlaps with no assumptions about reduction strategy, (ii) results for such term rewriting systems have previously only been obtained for k = 1, and with additional syntactic restrictions on top of cons-freeness and left-linearity. Our results are apparently among the first implicit characterizations of the hierarchy E = E1^1TIME ⊆\subseteq E2^2TIME ⊆\subseteq .... Our work confirms prior results that having full non-determinism (via overlaps of rules) does not directly allow characterization of non-deterministic complexity classes like NE. We also show that non-determinism makes the classes characterized highly sensitive to minor syntactic changes such as admitting product types or non-left-linear rules.Comment: Extended version (with appendices) of a paper published in FSCD 201

    Layer Systems for Proving Confluence

    Get PDF
    We introduce layer systems for proving generalizations of the modularity of confluence for first-order rewrite systems. Layer systems specify how terms can be divided into layers. We establish structural conditions on those systems that imply confluence. Our abstract framework covers known results like many-sorted persistence, layer-preservation and currying. We present a counterexample to an extension of the former to order-sorted rewriting and derive new sufficient conditions for the extension to hold

    The First-Order Theory of Ground Tree Rewrite Graphs

    Full text link
    We prove that the complexity of the uniform first-order theory of ground tree rewrite graphs is in ATIME(2^{2^{poly(n)}},O(n)). Providing a matching lower bound, we show that there is some fixed ground tree rewrite graph whose first-order theory is hard for ATIME(2^{2^{poly(n)}},poly(n)) with respect to logspace reductions. Finally, we prove that there exists a fixed ground tree rewrite graph together with a single unary predicate in form of a regular tree language such that the resulting structure has a non-elementary first-order theory.Comment: accepted for Logical Methods in Computer Scienc

    Deciding the Word Problem for Ground Identities with Commutative and Extensional Symbols

    Get PDF
    The word problem for a finite set of ground identities is known to be decidable in polynomial time using congruence closure, and this is also the case if some of the function symbols are assumed to be commutative. We show that decidability in P is preserved if we add the assumption that certain function symbols f are extensional in the sense that f(s1,…,sn) ≈ f(t1,…,tn) implies s1 ≈ t1,…,sn ≈ tn. In addition, we investigate a variant of extensionality that is more appropriate for commutative function symbols, but which raises the complexity of the word problem to coNP
    • …
    corecore