496 research outputs found

    Decidable and undecidable problems about quantum automata

    Get PDF
    We study the following decision problem: is the language recognized by a quantum finite automaton empty or non-empty? We prove that this problem is decidable or undecidable depending on whether recognition is defined by strict or non-strict thresholds. This result is in contrast with the corresponding situation for probabilistic finite automata for which it is known that strict and non-strict thresholds both lead to undecidable problems.Comment: 10 page

    Undecidability of L(A)=L(B)L(\mathcal{A})=L(\mathcal{B}) recognized by measure many 1-way quantum automata

    Full text link
    Let L>λ(A)L_{>\lambda}(\mathcal{A}) and L≄λ(A)L_{\geq\lambda}(\mathcal{A}) be the languages recognized by {\em measure many 1-way quantum finite automata (MMQFA)} (or,{\em enhanced 1-way quantum finite automata(EQFA)}) A\mathcal{A} with strict, resp. non-strict cut-point λ\lambda. We consider the languages equivalence problem, showing that \begin{itemize} \item {both strict and non-strict languages equivalence are undecidable;} \item {to do this, we provide an additional proof of the undecidability of non-strict and strict emptiness of MMQFA(EQFA), and then reducing the languages equivalence problem to emptiness problem;} \item{Finally, some other Propositions derived from the above results are collected.} \end{itemize}Comment: Readability improved, title change

    (Un)decidable Problems about Reachability of Quantum Systems

    Full text link
    We study the reachability problem of a quantum system modelled by a quantum automaton. The reachable sets are chosen to be boolean combinations of (closed) subspaces of the state space of the quantum system. Four different reachability properties are considered: eventually reachable, globally reachable, ultimately forever reachable, and infinitely often reachable. The main result of this paper is that all of the four reachability properties are undecidable in general; however, the last three become decidable if the reachable sets are boolean combinations without negation

    On equivalence, languages equivalence and minimization of multi-letter and multi-letter measure-many quantum automata

    Full text link
    We first show that given a k1k_1-letter quantum finite automata A1\mathcal{A}_1 and a k2k_2-letter quantum finite automata A2\mathcal{A}_2 over the same input alphabet ÎŁ\Sigma, they are equivalent if and only if they are (n12+n22−1)∣Σ∣k−1+k(n_1^2+n_2^2-1)|\Sigma|^{k-1}+k-equivalent where n1n_1, i=1,2i=1,2, are the numbers of state in Ai\mathcal{A}_i respectively, and k=max⁥{k1,k2}k=\max\{k_1,k_2\}. By applying a method, due to the author, used to deal with the equivalence problem of {\it measure many one-way quantum finite automata}, we also show that a k1k_1-letter measure many quantum finite automaton A1\mathcal{A}_1 and a k2k_2-letter measure many quantum finite automaton A2\mathcal{A}_2 are equivalent if and only if they are (n12+n22−1)∣Σ∣k−1+k(n_1^2+n_2^2-1)|\Sigma|^{k-1}+k-equivalent where nin_i, i=1,2i=1,2, are the numbers of state in Ai\mathcal{A}_i respectively, and k=max⁥{k1,k2}k=\max\{k_1,k_2\}. Next, we study the language equivalence problem of those two kinds of quantum finite automata. We show that for kk-letter quantum finite automata, the non-strict cut-point language equivalence problem is undecidable, i.e., it is undecidable whether L≄λ(A1)=L≄λ(A2)L_{\geq\lambda}(\mathcal{A}_1)=L_{\geq\lambda}(\mathcal{A}_2) where 0<λ≀10<\lambda\leq 1 and Ai\mathcal{A}_i are kik_i-letter quantum finite automata. Further, we show that both strict and non-strict cut-point language equivalence problem for kk-letter measure many quantum finite automata are undecidable. The direct consequences of the above outcomes are summarized in the paper. Finally, we comment on existing proofs about the minimization problem of one way quantum finite automata not only because we have been showing great interest in this kind of problem, which is very important in classical automata theory, but also due to that the problem itself, personally, is a challenge. This problem actually remains open.Comment: 30 pages, conclusion section correcte

    When is Containment Decidable for Probabilistic Automata?

    Get PDF
    The containment problem for quantitative automata is the natural quantitative generalisation of the classical language inclusion problem for Boolean automata. We study it for probabilistic automata, where it is known to be undecidable in general. We restrict our study to the class of probabilistic automata with bounded ambiguity. There, we show decidability (subject to Schanuel's conjecture) when one of the automata is assumed to be unambiguous while the other one is allowed to be finitely ambiguous. Furthermore, we show that this is close to the most general decidable fragment of this problem by proving that it is already undecidable if one of the automata is allowed to be linearly ambiguous

    A Survey on Continuous Time Computations

    Full text link
    We provide an overview of theories of continuous time computation. These theories allow us to understand both the hardness of questions related to continuous time dynamical systems and the computational power of continuous time analog models. We survey the existing models, summarizing results, and point to relevant references in the literature

    Quantum finite automata and linear context-free languages: a decidable problem

    Get PDF
    We consider the so-called measure once finite quantum automata model introduced by Moore and Crutchfield in 2000. We show that given a language recognized by such a device and a linear context-free language, it is recursively decidable whether or not they have a nonempty intersection. This extends a result of Blondel et al. which can be interpreted as solving the problem with the free monoid in place of the family of linear context-free languages. © 2013 Springer-Verlag

    Vector Reachability Problem in SL(2,Z)\mathrm{SL}(2,\mathbb{Z})

    Get PDF
    The decision problems on matrices were intensively studied for many decades as matrix products play an essential role in the representation of various computational processes. However, many computational problems for matrix semigroups are inherently difficult to solve even for problems in low dimensions and most matrix semigroup problems become undecidable in general starting from dimension three or four. This paper solves two open problems about the decidability of the vector reachability problem over a finitely generated semigroup of matrices from SL(2,Z)\mathrm{SL}(2,\mathbb{Z}) and the point to point reachability (over rational numbers) for fractional linear transformations, where associated matrices are from SL(2,Z)\mathrm{SL}(2,\mathbb{Z}). The approach to solving reachability problems is based on the characterization of reachability paths between points which is followed by the translation of numerical problems on matrices into computational and combinatorial problems on words and formal languages. We also give a geometric interpretation of reachability paths and extend the decidability results to matrix products represented by arbitrary labelled directed graphs. Finally, we will use this technique to prove that a special case of the scalar reachability problem is decidable
    • 

    corecore