961 research outputs found

    Decidability of the Membership Problem for 2×22\times 2 integer matrices

    Get PDF
    The main result of this paper is the decidability of the membership problem for 2×22\times 2 nonsingular integer matrices. Namely, we will construct the first algorithm that for any nonsingular 2×22\times 2 integer matrices M1,,MnM_1,\dots,M_n and MM decides whether MM belongs to the semigroup generated by {M1,,Mn}\{M_1,\dots,M_n\}. Our algorithm relies on a translation of the numerical problem on matrices into combinatorial problems on words. It also makes use of some algebraical properties of well-known subgroups of GL(2,Z)\mathrm{GL}(2,\mathbb{Z}) and various new techniques and constructions that help to limit an infinite number of possibilities by reducing them to the membership problem for regular languages

    Vector Reachability Problem in SL(2,Z)\mathrm{SL}(2,\mathbb{Z})

    Get PDF
    The decision problems on matrices were intensively studied for many decades as matrix products play an essential role in the representation of various computational processes. However, many computational problems for matrix semigroups are inherently difficult to solve even for problems in low dimensions and most matrix semigroup problems become undecidable in general starting from dimension three or four. This paper solves two open problems about the decidability of the vector reachability problem over a finitely generated semigroup of matrices from SL(2,Z)\mathrm{SL}(2,\mathbb{Z}) and the point to point reachability (over rational numbers) for fractional linear transformations, where associated matrices are from SL(2,Z)\mathrm{SL}(2,\mathbb{Z}). The approach to solving reachability problems is based on the characterization of reachability paths between points which is followed by the translation of numerical problems on matrices into computational and combinatorial problems on words and formal languages. We also give a geometric interpretation of reachability paths and extend the decidability results to matrix products represented by arbitrary labelled directed graphs. Finally, we will use this technique to prove that a special case of the scalar reachability problem is decidable

    On Termination of Integer Linear Loops

    Full text link
    A fundamental problem in program verification concerns the termination of simple linear loops of the form x := u ; while Bx >= b do {x := Ax + a} where x is a vector of variables, u, a, and c are integer vectors, and A and B are integer matrices. Assuming the matrix A is diagonalisable, we give a decision procedure for the problem of whether, for all initial integer vectors u, such a loop terminates. The correctness of our algorithm relies on sophisticated tools from algebraic and analytic number theory, Diophantine geometry, and real algebraic geometry. To the best of our knowledge, this is the first substantial advance on a 10-year-old open problem of Tiwari (2004) and Braverman (2006).Comment: Accepted to SODA1

    Orbit decidability and the conjugacy problem for some extensions of groups

    No full text
    Given a short exact sequence of groups with certain conditions, 1 ? F ? G ? H ? 1, weprove that G has solvable conjugacy problem if and only if the corresponding action subgroupA 6 Aut(F) is orbit decidable. From this, we deduce that the conjugacy problem is solvable,among others, for all groups of the form Z2?Fm, F2?Fm, Fn?Z, and Zn?A Fm with virtually solvable action group A 6 GLn(Z). Also, we give an easy way of constructing groups of the form Z4?Fn and F3?Fn with unsolvable conjugacy problem. On the way, we solve the twisted conjugacy problem for virtually surface and virtually polycyclic groups, and give an example of a group with solvable conjugacy problem but unsolvable twisted conjugacy problem. As an application, an alternative solution to the conjugacy problem in Aut(F2) is given

    The Identity Correspondence Problem and its Applications

    Get PDF
    In this paper we study several closely related fundamental problems for words and matrices. First, we introduce the Identity Correspondence Problem (ICP): whether a finite set of pairs of words (over a group alphabet) can generate an identity pair by a sequence of concatenations. We prove that ICP is undecidable by a reduction of Post's Correspondence Problem via several new encoding techniques. In the second part of the paper we use ICP to answer a long standing open problem concerning matrix semigroups: "Is it decidable for a finitely generated semigroup S of square integral matrices whether or not the identity matrix belongs to S?". We show that the problem is undecidable starting from dimension four even when the number of matrices in the generator is 48. From this fact, we can immediately derive that the fundamental problem of whether a finite set of matrices generates a group is also undecidable. We also answer several question for matrices over different number fields. Apart from the application to matrix problems, we believe that the Identity Correspondence Problem will also be useful in identifying new areas of undecidable problems in abstract algebra, computational questions in logic and combinatorics on words.Comment: We have made some proofs clearer and fixed an important typo from the published journal version of this article, see footnote 3 on page 1
    corecore