534 research outputs found

    In the Maze of Data Languages

    Full text link
    In data languages the positions of strings and trees carry a label from a finite alphabet and a data value from an infinite alphabet. Extensions of automata and logics over finite alphabets have been defined to recognize data languages, both in the string and tree cases. In this paper we describe and compare the complexity and expressiveness of such models to understand which ones are better candidates as regular models

    On Functionality of Visibly Pushdown Transducers

    Full text link
    Visibly pushdown transducers form a subclass of pushdown transducers that (strictly) extends finite state transducers with a stack. Like visibly pushdown automata, the input symbols determine the stack operations. In this paper, we prove that functionality is decidable in PSpace for visibly pushdown transducers. The proof is done via a pumping argument: if a word with two outputs has a sufficiently large nesting depth, there exists a nested word with two outputs whose nesting depth is strictly smaller. The proof uses technics of word combinatorics. As a consequence of decidability of functionality, we also show that equivalence of functional visibly pushdown transducers is Exptime-Complete.Comment: 20 page

    Decision Problems for Origin-Close Top-Down Tree Transducers

    Get PDF
    Tree transductions are binary relations of finite trees. For tree transductions defined by non-deterministic top-down tree transducers, inclusion, equivalence and synthesis problems are known to be undecidable. Adding origin semantics to tree transductions, i.e., tagging each output node with the input node it originates from, is a known way to recover decidability for inclusion and equivalence. The origin semantics is rather rigid, in this work, we introduce a similarity measure for transducers with origin semantics and show that we can decide inclusion, equivalence and synthesis problems for origin-close non-deterministic top-down tree transducers

    Weak MSO+U with Path Quantifiers over Infinite Trees

    Full text link
    This paper shows that over infinite trees, satisfiability is decidable for weak monadic second-order logic extended by the unbounding quantifier U and quantification over infinite paths. The proof is by reduction to emptiness for a certain automaton model, while emptiness for the automaton model is decided using profinite trees.Comment: version of an ICALP 2014 paper with appendice

    Aperiodic String Transducers

    Full text link
    Regular string-to-string functions enjoy a nice triple characterization through deterministic two-way transducers (2DFT), streaming string transducers (SST) and MSO definable functions. This result has recently been lifted to FO definable functions, with equivalent representations by means of aperiodic 2DFT and aperiodic 1-bounded SST, extending a well-known result on regular languages. In this paper, we give three direct transformations: i) from 1-bounded SST to 2DFT, ii) from 2DFT to copyless SST, and iii) from k-bounded to 1-bounded SST. We give the complexity of each construction and also prove that they preserve the aperiodicity of transducers. As corollaries, we obtain that FO definable string-to-string functions are equivalent to SST whose transition monoid is finite and aperiodic, and to aperiodic copyless SST
    corecore