4,572 research outputs found

    Decidability and k-Regular Sequences

    Get PDF
    In this paper we consider a number of natural decision problems involving k-regular sequences. Specifically, they arise from considering • lower and upper bounds on growth rate; in particular boundedness, • images, • regularity (recognizability by a deterministic finite automaton) of preimages, and • factors, such as squares and palindromes, of such sequences. We show that these decision problems are undecidable.Austrian Science Fun

    Decidability in the logic of subsequences and supersequences

    Get PDF
    We consider first-order logics of sequences ordered by the subsequence ordering, aka sequence embedding. We show that the \Sigma_2 theory is undecidable, answering a question left open by Kuske. Regarding fragments with a bounded number of variables, we show that the FO2 theory is decidable while the FO3 theory is undecidable

    What's Decidable About Sequences?

    Full text link
    We present a first-order theory of sequences with integer elements, Presburger arithmetic, and regular constraints, which can model significant properties of data structures such as arrays and lists. We give a decision procedure for the quantifier-free fragment, based on an encoding into the first-order theory of concatenation; the procedure has PSPACE complexity. The quantifier-free fragment of the theory of sequences can express properties such as sortedness and injectivity, as well as Boolean combinations of periodic and arithmetic facts relating the elements of the sequence and their positions (e.g., "for all even i's, the element at position i has value i+3 or 2i"). The resulting expressive power is orthogonal to that of the most expressive decidable logics for arrays. Some examples demonstrate that the fragment is also suitable to reason about sequence-manipulating programs within the standard framework of axiomatic semantics.Comment: Fixed a few lapses in the Mergesort exampl

    Forward Analysis and Model Checking for Trace Bounded WSTS

    Full text link
    We investigate a subclass of well-structured transition systems (WSTS), the bounded---in the sense of Ginsburg and Spanier (Trans. AMS 1964)---complete deterministic ones, which we claim provide an adequate basis for the study of forward analyses as developed by Finkel and Goubault-Larrecq (Logic. Meth. Comput. Sci. 2012). Indeed, we prove that, unlike other conditions considered previously for the termination of forward analysis, boundedness is decidable. Boundedness turns out to be a valuable restriction for WSTS verification, as we show that it further allows to decide all ω\omega-regular properties on the set of infinite traces of the system

    Decision Problems for Deterministic Pushdown Automata on Infinite Words

    Full text link
    The article surveys some decidability results for DPDAs on infinite words (omega-DPDA). We summarize some recent results on the decidability of the regularity and the equivalence problem for the class of weak omega-DPDAs. Furthermore, we present some new results on the parity index problem for omega-DPDAs. For the specification of a parity condition, the states of the omega-DPDA are assigned priorities (natural numbers), and a run is accepting if the highest priority that appears infinitely often during a run is even. The basic simplification question asks whether one can determine the minimal number of priorities that are needed to accept the language of a given omega-DPDA. We provide some decidability results on variations of this question for some classes of omega-DPDAs.Comment: In Proceedings AFL 2014, arXiv:1405.527

    A Characterization for Decidable Separability by Piecewise Testable Languages

    Full text link
    The separability problem for word languages of a class C\mathcal{C} by languages of a class S\mathcal{S} asks, for two given languages II and EE from C\mathcal{C}, whether there exists a language SS from S\mathcal{S} that includes II and excludes EE, that is, ISI \subseteq S and SE=S\cap E = \emptyset. In this work, we assume some mild closure properties for C\mathcal{C} and study for which such classes separability by a piecewise testable language (PTL) is decidable. We characterize these classes in terms of decidability of (two variants of) an unboundedness problem. From this, we deduce that separability by PTL is decidable for a number of language classes, such as the context-free languages and languages of labeled vector addition systems. Furthermore, it follows that separability by PTL is decidable if and only if one can compute for any language of the class its downward closure wrt. the scattered substring ordering (i.e., if the set of scattered substrings of any language of the class is effectively regular). The obtained decidability results contrast some undecidability results. In fact, for all (non-regular) language classes that we present as examples with decidable separability, it is undecidable whether a given language is a PTL itself. Our characterization involves a result of independent interest, which states that for any kind of languages II and EE, non-separability by PTL is equivalent to the existence of common patterns in II and EE

    Verifying Time Complexity of Deterministic Turing Machines

    Full text link
    We show that, for all reasonable functions T(n)=o(nlogn)T(n)=o(n\log n), we can algorithmically verify whether a given one-tape Turing machine runs in time at most T(n)T(n). This is a tight bound on the order of growth for the function TT because we prove that, for T(n)(n+1)T(n)\geq(n+1) and T(n)=Ω(nlogn)T(n)=\Omega(n\log n), there exists no algorithm that would verify whether a given one-tape Turing machine runs in time at most T(n)T(n). We give results also for the case of multi-tape Turing machines. We show that we can verify whether a given multi-tape Turing machine runs in time at most T(n)T(n) iff T(n0)<(n0+1)T(n_0)< (n_0+1) for some n0Nn_0\in\mathbb{N}. We prove a very general undecidability result stating that, for any class of functions F\mathcal{F} that contains arbitrary large constants, we cannot verify whether a given Turing machine runs in time T(n)T(n) for some TFT\in\mathcal{F}. In particular, we cannot verify whether a Turing machine runs in constant, polynomial or exponential time.Comment: 18 pages, 1 figur
    corecore