159 research outputs found

    Interval logic. Proof theory and theorem proving

    Get PDF

    08271 Abstracts Collection -- Topological and Game-Theoretic Aspects of Infinite Computations

    Get PDF
    From June 29, 2008, to July 4, 2008, the Dagstuhl Seminar 08271 ``Topological and Game-Theoretic Aspects of Infinite Computations\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, many participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    24th EACSL Annual Conference on Computer Science Logic: CSL 2015, September 7-10, 2015, Berlin, Germany

    Get PDF

    Discounting in LTL

    Full text link
    In recent years, there is growing need and interest in formalizing and reasoning about the quality of software and hardware systems. As opposed to traditional verification, where one handles the question of whether a system satisfies, or not, a given specification, reasoning about quality addresses the question of \emph{how well} the system satisfies the specification. One direction in this effort is to refine the "eventually" operators of temporal logic to {\em discounting operators}: the satisfaction value of a specification is a value in [0,1][0,1], where the longer it takes to fulfill eventuality requirements, the smaller the satisfaction value is. In this paper we introduce an augmentation by discounting of Linear Temporal Logic (LTL), and study it, as well as its combination with propositional quality operators. We show that one can augment LTL with an arbitrary set of discounting functions, while preserving the decidability of the model-checking problem. Further augmenting the logic with unary propositional quality operators preserves decidability, whereas adding an average-operator makes some problems undecidable. We also discuss the complexity of the problem, as well as various extensions

    Quantities in Games and Modal Transition Systems

    Get PDF

    One-Variable Fragments of First-Order Many-Valued Logics

    Get PDF
    In this thesis we study one-variable fragments of first-order logics. Such a one-variable fragment consists of those first-order formulas that contain only unary predicates and a single variable. These fragments can be viewed from a modal perspective by replacing the universal and existential quantifier with a box and diamond modality, respectively, and the unary predicates with corresponding propositional variables. Under this correspondence, the one-variable fragment of first-order classical logic famously corresponds to the modal logic S5. This thesis explores some such correspondences between first-order and modal logics. Firstly, we study first-order intuitionistic logics based on linear intuitionistic Kripke frames. We show that their one-variable fragments correspond to particular modal Gödel logics, defined over many-valued S5-Kripke frames. For a large class of these logics, we prove the validity problem to be decidable, even co-NP-complete. Secondly, we investigate the one-variable fragment of first-order Abelian logic, i.e., the first-order logic based on the ordered additive group of the reals. We provide two completeness results with respect to Hilbert-style axiomatizations: one for the one-variable fragment, and one for the one-variable fragment that does not contain any lattice connectives. Both these fragments are proved to be decidable. Finally, we launch a much broader algebraic investigation into one-variable fragments. We turn to the setting of first-order substructural logics (with the rule of exchange). Inspired by work on, among others, monadic Boolean algebras and monadic Heyting algebras, we define monadic commutative pointed residuated lattices as a first (algebraic) investigation into one-variable fragments of this large class of first-order logics. We prove a number of properties for these newly defined algebras, including a characterization in terms of relatively complete subalgebras as well as a characterization of their congruences

    Provability in BI's Sequent Calculus is Decidable

    Full text link
    The logic of Bunched Implications (BI) combines both additive and multiplicative connectives, which include two primitive intuitionistic implications. As a consequence, contexts in the sequent presentation are not lists, nor multisets, but rather tree-like structures called bunches. This additional complexity notwithstanding, the logic has a well-behaved metatheory admitting all the familiar forms of semantics and proof systems. However, the presentation of an effective proof-search procedure has been elusive since the logic's debut. We show that one can reduce the proof-search space for any given sequent to a primitive recursive set, the argument generalizing Gentzen's decidability argument for classical propositional logic and combining key features of Dyckhoff's contraction-elimination argument for intuitionistic logic. An effective proof-search procedure, and hence decidability of provability, follows as a corollary.Comment: Submitted to CADE-2
    • …
    corecore