235 research outputs found

    Changing a semantics: opportunism or courage?

    Full text link
    The generalized models for higher-order logics introduced by Leon Henkin, and their multiple offspring over the years, have become a standard tool in many areas of logic. Even so, discussion has persisted about their technical status, and perhaps even their conceptual legitimacy. This paper gives a systematic view of generalized model techniques, discusses what they mean in mathematical and philosophical terms, and presents a few technical themes and results about their role in algebraic representation, calibrating provability, lowering complexity, understanding fixed-point logics, and achieving set-theoretic absoluteness. We also show how thinking about Henkin's approach to semantics of logical systems in this generality can yield new results, dispelling the impression of adhocness. This paper is dedicated to Leon Henkin, a deep logician who has changed the way we all work, while also being an always open, modest, and encouraging colleague and friend.Comment: 27 pages. To appear in: The life and work of Leon Henkin: Essays on his contributions (Studies in Universal Logic) eds: Manzano, M., Sain, I. and Alonso, E., 201

    One-dimensional fragment of first-order logic

    Full text link
    We introduce a novel decidable fragment of first-order logic. The fragment is one-dimensional in the sense that quantification is limited to applications of blocks of existential (universal) quantifiers such that at most one variable remains free in the quantified formula. The fragment is closed under Boolean operations, but additional restrictions (called uniformity conditions) apply to combinations of atomic formulae with two or more variables. We argue that the notions of one-dimensionality and uniformity together offer a novel perspective on the robust decidability of modal logics. We also establish that minor modifications to the restrictions of the syntax of the one-dimensional fragment lead to undecidable formalisms. Namely, the two-dimensional and non-uniform one-dimensional fragments are shown undecidable. Finally, we prove that with regard to expressivity, the one-dimensional fragment is incomparable with both the guarded negation fragment and two-variable logic with counting. Our proof of the decidability of the one-dimensional fragment is based on a technique involving a direct reduction to the monadic class of first-order logic. The novel technique is itself of an independent mathematical interest

    On the uniform one-dimensional fragment

    Full text link
    The uniform one-dimensional fragment of first-order logic, U1, is a recently introduced formalism that extends two-variable logic in a natural way to contexts with relations of all arities. We survey properties of U1 and investigate its relationship to description logics designed to accommodate higher arity relations, with particular attention given to DLR_reg. We also define a description logic version of a variant of U1 and prove a range of new results concerning the expressivity of U1 and related logics

    Tarski's influence on computer science

    Full text link
    The influence of Alfred Tarski on computer science was indirect but significant in a number of directions and was in certain respects fundamental. Here surveyed is the work of Tarski on the decision procedure for algebra and geometry, the method of elimination of quantifiers, the semantics of formal languages, modeltheoretic preservation theorems, and algebraic logic; various connections of each with computer science are taken up

    HoCHC: A Refutationally Complete and Semantically Invariant System of Higher-order Logic Modulo Theories

    Full text link
    We present a simple resolution proof system for higher-order constrained Horn clauses (HoCHC) - a system of higher-order logic modulo theories - and prove its soundness and refutational completeness w.r.t. the standard semantics. As corollaries, we obtain the compactness theorem and semi-decidability of HoCHC for semi-decidable background theories, and we prove that HoCHC satisfies a canonical model property. Moreover a variant of the well-known translation from higher-order to 1st-order logic is shown to be sound and complete for HoCHC in standard semantics. We illustrate how to transfer decidability results for (fragments of) 1st-order logic modulo theories to our higher-order setting, using as example the Bernays-Schonfinkel-Ramsey fragment of HoCHC modulo a restricted form of Linear Integer Arithmetic

    A Simple Logic of Functional Dependence

    Get PDF
    This paper presents a simple decidable logic of functional dependence LFD, based on an extension of classical propositional logic with dependence atoms plus dependence quantifiers treated as modalities, within the setting of generalized assignment semantics for first order logic. The expressive strength, complete proof calculus and meta-properties of LFD are explored. Various language extensions are presented as well, up to undecidable modal-style logics for independence and dynamic logics of changing dependence models. Finally, more concrete settings for dependence are discussed: continuous dependence in topological models, linear dependence in vector spaces, and temporal dependence in dynamical systems and games.Comment: 56 pages. Journal of Philosophical Logic (2021

    Two-sorted metric temporal logic

    Get PDF
    AbstractTemporal logic has been successfully used for modeling and analyzing the behavior of reactive and concurrent systems. Standard temporal logic is inadequate for real-time applications because it only deals with qualitative timing properties. This is overcome by metric temporal logics which offer a uniform logical framework in which both qualitative and quantitative timing properties can be expressed by making use of a parameterized operator of relative temporal realization.In this paper we deal with completeness issues for basic systems of metric temporal logic —despite their relevance, such issues have been ignored or only partially addressed in the literature. We view metric temporal logics as two-sorted formalisms having formulae ranging over time instants and parameters ranging over an (ordered) abelian group of temporal displacements. We first provide an axiomatization of the pure metric fragment of the logic, and prove its soundness and completeness. Then, we show how to obtain the metric temporal logic of linear orders by adding an ordering over displacements. Finally, we consider general metric temporal logics allowing quantification over algebraic variables and free mixing of algebraic formulae and temporal propositional symbols

    Complete Additivity and Modal Incompleteness

    Get PDF
    In this paper, we tell a story about incompleteness in modal logic. The story weaves together a paper of van Benthem, `Syntactic aspects of modal incompleteness theorems,' and a longstanding open question: whether every normal modal logic can be characterized by a class of completely additive modal algebras, or as we call them, V-BAOs. Using a first-order reformulation of the property of complete additivity, we prove that the modal logic that starred in van Benthem's paper resolves the open question in the negative. In addition, for the case of bimodal logic, we show that there is a naturally occurring logic that is incomplete with respect to V-BAOs, namely the provability logic GLB. We also show that even logics that are unsound with respect to such algebras do not have to be more complex than the classical propositional calculus. On the other hand, we observe that it is undecidable whether a syntactically defined logic is V-complete. After these results, we generalize the Blok Dichotomy to degrees of V-incompleteness. In the end, we return to van Benthem's theme of syntactic aspects of modal incompleteness

    Game Semantics, Quantifiers and Logical Omniscience

    Get PDF
    Logical omniscience states that the knowledge set of ordinary rational agents is closed for its logical consequences. Although epistemic logicians in general judge this principle unrealistic, there is no consensus on how it should be restrained. The challenge is conceptual: we must find adequate criteria for separating obvious logical consequences (consequences for which epistemic closure certainly holds) from non-obvious ones. Non-classical game-theoretic semantics has been employed in this discussion with relative success. On the one hand, with urn semantics [15], an expressive fragment of classical game semantics that weakens the dependence relations between quantifiers occurring in a formula, we can formalize, for a broad array of examples, epistemic scenarios in which an individual ignores the validity of some first-order sentence. On the other hand, urn semantics offers a disproportionate restriction of logical omniscience. Therefore, an improvement of this system is needed to obtain a better solution of the problem. In this paper, I argue that our linguistic competence in using quantifiers requires a sort of basic hypothetical logical knowledge that can be formulated as follows: when inquiring after the truth-value of ∀xφ, an individual might be unaware of all substitutional instances this sentence accepts, but at least she must know that, if an element a is given, then ∀xφ holds only if φ(x/a) is true. This thesis accepts game-theoretic formalization in terms of a refinement of urn semantics. I maintain that the system so obtained (US+) affords an improved solution of the logical omniscience problem. To do this, I characterize first-order theoremhood in US+. As a consequence of this result, we will see that the ideal reasoner depicted by US+ only knows the validity of first-order formulas whose Herbrand witnesses can be trivially found, a fact that provides strong evidence that our refinement of urn semantics captures a relevant sense of logical obviousness
    • …
    corecore