497 research outputs found

    Enhancing data privacy and security in Internet of Things through decentralized models and services

    Get PDF
    exploits a Byzantine Fault Tolerant (BFT) blockchain, in order to perform collaborative and dynamic botnet detection by collecting and auditing IoT devices\u2019 network traffic flows as blockchain transactions. Secondly, we take the challenge to decentralize IoT, and design a hybrid blockchain architecture for IoT, by proposing Hybrid-IoT. In Hybrid-IoT, subgroups of IoT devices form PoW blockchains, referred to as PoW sub-blockchains. Connection among the PoW sub-blockchains employs a BFT inter-connector framework. We focus on the PoW sub-blockchains formation, guided by a set of guidelines based on a set of dimensions, metrics and bounds

    Enhancing data privacy and security in Internet of Things through decentralized models and services

    Get PDF
    exploits a Byzantine Fault Tolerant (BFT) blockchain, in order to perform collaborative and dynamic botnet detection by collecting and auditing IoT devices’ network traffic flows as blockchain transactions. Secondly, we take the challenge to decentralize IoT, and design a hybrid blockchain architecture for IoT, by proposing Hybrid-IoT. In Hybrid-IoT, subgroups of IoT devices form PoW blockchains, referred to as PoW sub-blockchains. Connection among the PoW sub-blockchains employs a BFT inter-connector framework. We focus on the PoW sub-blockchains formation, guided by a set of guidelines based on a set of dimensions, metrics and bounds

    Secure Decentralized IoT Service Platform using Consortium Blockchain

    Full text link
    Blockchain technology has gained increasing popularity in the research of Internet of Things (IoT) systems in the past decade. As a distributed and immutable ledger secured by strong cryptography algorithms, the blockchain brings a new perspective to secure IoT systems. Many studies have been devoted to integrating blockchain into IoT device management, access control, data integrity, security, and privacy. In comparison, the blockchain-facilitated IoT communication is much less studied. Nonetheless, we see the potential of blockchain in decentralizing and securing IoT communications. This paper proposes an innovative IoT service platform powered by consortium blockchain technology. The presented solution abstracts machine-to-machine (M2M) and human-to-machine (H2M) communications into services provided by IoT devices. Then, it materializes data exchange of the IoT network through smart contracts and blockchain transactions. Additionally, we introduce the auxiliary storage layer to the proposed platform to address various data storage requirements. Our proof-of-concept implementation is tested against various workloads and connection sizes under different block configurations to evaluate the platform's transaction throughput, latency, and hardware utilization. The experiment results demonstrate that our solution can maintain high performance under most testing scenarios and provide valuable insights on optimizing the blockchain configuration to achieve the best performance

    Using Blockchain to support Data & Service Monetization

    Get PDF
    Two required features of a data monetization platform are query and retrieval of the metadata of the resources to be monetized. Centralized platforms rely on the maturity of traditional NoSQL database systems to support these features. These databases, for example, MongoDB allows for very efficient query and retrieval of data it stores. However, centralized platforms come with a bag of security and privacy concerns, making them not the ideal approach for a data monetization platform. On the other hand, most existing decentralized platforms are only partially decentralized. In this research, I developed Cowry, a platform for publishing metadata describing available resources (data or services), discovery of published metadata including fast search and filtering. My main contribution is a fully decentralized architecture that combines blockchain and traditional distributed database to gain additional features such as efficient query and retrieval of metadata stored on the blockchain

    Privacy-Aware and Secure Decentralized Air Quality Monitoring

    Get PDF
    Indoor Air Quality monitoring is a major asset to improving quality of life and building management. Today, the evolution of embedded technologies allows the implementation of such monitoring on the edge of the network. However, several concerns need to be addressed related to data security and privacy, routing and sink placement optimization, protection from external monitoring, and distributed data mining. In this paper, we describe an integrated framework that features distributed storage, blockchain-based Role-based Access Control, onion routing, routing and sink placement optimization, and distributed data mining to answer these concerns. We describe the organization of our contribution and show its relevance with simulations and experiments over a set of use cases
    corecore