3,516 research outputs found

    An analysis on decentralized adaptive MAC protocols for Cognitive Radio networks

    Get PDF
    The scarcity of bandwidth in the radio spectrum has become more vital since the demand for more and more wireless applications has increased. Most of the spectrum bands have been allocated although many studies have shown that these bands are significantly underutilized most of the time. The problem of unavailability of spectrum and inefficiency in its utilization has been smartly addressed by the Cognitive Radio (CR) Technology which is an opportunistic network that senses the environment, observes the network changes, and then using knowledge gained from the prior interaction with the network, makes intelligent decisions by dynamically adapting their transmission characteristics. In this paper some of the decentralized adaptive MAC protocols for CR networks have been critically analyzed and a novel adaptive MAC protocol for CR networks, DNG-MAC which is decentralized and non-global in nature, has been proposed. The results show the DNG-MAC out performs other CR MAC protocols in terms of time and energy efficiency

    DDH-MAC: a novel dynamic de-centralized hybrid MAC protocol for cognitive radio networks

    Get PDF
    The radio spectrum (3kHz - 300GHz) has become saturated and proven to be insufficient to address the proliferation of new wireless applications. Cognitive Radio Technology which is an opportunistic network and is equipped with fully programmable wireless devices that empowers the network by OODA cycle and then make intelligent decisions by adapting their MAC and physical layer characteristics such as waveform, has appeared to be the only solution for current low spectrum availability and under utilization problem. In this paper a novel Dynamic De-Centralized Hybrid “DDH-MAC” protocol for Cognitive Radio Networks has been presented which lies between Global Common Control Channel (GCCC) and non-GCCC categories of cognitive radio MAC protocols. DDH-MAC is equipped with the best features of GCCC MAC protocols but also overcomes the saturation and security issues in GCCC. To the best of authors' knowledge, DDH-MAC is the first protocol which is hybrid between GCCC and non-GCCC family of protocols. DDH-MAC provides multiple levels of security and partially use GCCC to transmit beacon which sets and announces local control channel for exchange of free channel list (FCL) sensed by the co-operatively communicating cognitive radio nodes, subsequently providing secure transactions among participating nodes over the decided local control channel. This paper describes the framework of the DDH-MAC protocol in addition to its pseudo code for implementation; it is shown that the pre-transmission time for DDH-MAC is on average 20% better while compared to other cognitive radio MAC protocols

    Cognitive pilot channel: A radio enabler for spectrum awareness and optimized radio resource management

    Get PDF
    Today’s wireless communications landscape is characterized by the coexistence of a plethora of disparate radio access technologies (RATs), which exhibit varying features in terms of capacity and coverage capabilities, mobility support etc. and also offer a great number of applications and services to different types of devices. In such a miscellaneous environment, mobile terminals are provided with a great set of options while setting up the parameters of their operation including among others the RAT, carrier frequency, and must also take into account the latest trend towards a flexible spectrum framework in heterogeneous radio access networks (RANs). As a result, in order to implement the optimal action, a mobile terminal needs to be enabled to acquire knowledge of its environment and established policies. Apart from mobilizing a rather time- and power-consuming operation such as spectrum sensing, the Cognitive Pilot Channel (CPC) concept has been proposed as a solution for providing the terminal with the necessary radio awareness at a given time and place, in a possible flexible spectrum management context. Framed within the above, this paper, developed within the E3 project, aims at describing the CPC concept by showcasing its twofold role. First, as an enabler of the switch-on process for assisting the mobile terminal to camp onto the network side and second, as an enabler of an efficient decentralized and network-assisted radio resource management during the on-going communication phase.Postprint (published version

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table

    ETSI reconfigurable radio systems: status and future directions on software defined radio and cognitive radio standards

    Get PDF
    This article details the current work status of the ETSI Reconfigurable Radio Systems Technical Committee, positions the ETSI work with respect to other standards efforts (IEEE 802, IEEE SCC41) as well as the European Regulatory Framework, and gives an outlook on the future evolution. In particular, software defined radio related study results are presented with a focus on SDR architectures for mobile devices such as mobile phones. For MDs, a novel architecture and inherent interfaces are presented enabling the usage of SDR principles in a mass market context. Cognitive radio principles within ETSI RRS are concentrated on two topics, a cognitive pilot channel proposal and a Functional Architecture for Management and control of reconfigurable radio systems, including dynamic self-organizing planning and management, dynamic spectrum management, joint radio resource management. Finally, study results are indicated that are targeting a SDR/CR security framework.Postprint (published version
    • …
    corecore