710 research outputs found

    Decentralized Resource Scheduling in Grid/Cloud Computing

    Get PDF
    In the Grid/Cloud environment, applications or services and resources belong to different organizations with different objectives. Entities in the Grid/Cloud are autonomous and self-interested; however, they are willing to share their resources and services to achieve their individual and collective goals. In such open environment, the scheduling decision is a challenge given the decentralized nature of the environment. Each entity has specific requirements and objectives that need to achieve. In this thesis, we review the Grid/Cloud computing technologies, environment characteristics and structure and indicate the challenges within the resource scheduling. We capture the Grid/Cloud scheduling model based on the complete requirement of the environment. We further create a mapping between the Grid/Cloud scheduling problem and the combinatorial allocation problem and propose an adequate economic-based optimization model based on the characteristic and the structure nature of the Grid/Cloud. By adequacy, we mean that a comprehensive view of required properties of the Grid/Cloud is captured. We utilize the captured properties and propose a bidding language that is expressive where entities have the ability to specify any set of preferences in the Grid/Cloud and simple as entities have the ability to express structured preferences directly. We propose a winner determination model and mechanism that utilizes the proposed bidding language and finds a scheduling solution. Our proposed approach integrates concepts and principles of mechanism design and classical scheduling theory. Furthermore, we argue that in such open environment privacy concerns by nature is part of the requirement in the Grid/Cloud. Hence, any scheduling decision within the Grid/Cloud computing environment is to incorporate the feasibility of privacy protection of an entity. Each entity has specific requirements in terms of scheduling and privacy preferences. We analyze the privacy problem in the Grid/Cloud computing environment and propose an economic based model and solution architecture that provides a scheduling solution given privacy concerns in the Grid/Cloud. Finally, as a demonstration of the applicability of the approach, we apply our solution by integrating with Globus toolkit (a well adopted tool to enable Grid/Cloud computing environment). We also, created simulation experimental results to capture the economic and time efficiency of the proposed solution

    A theoretical and computational basis for CATNETS

    Get PDF
    The main content of this report is the identification and definition of market mechanisms for Application Layer Networks (ALNs). On basis of the structured Market Engineering process, the work comprises the identification of requirements which adequate market mechanisms for ALNs have to fulfill. Subsequently, two mechanisms for each, the centralized and the decentralized case are described in this document. These build the theoretical foundation for the work within the following two years of the CATNETS project. --Grid Computing

    Smarter City: Smart Energy Grid based on Blockchain Technology

    Get PDF
    The improvement of the Quality of Life (QoL) and the enhancement of the Quality of Services (QoS) represent the main goal of every city evolutionary process. It is possible making cities smarter promoting innovative solutions by use of Information and Communication Technology (ICT) for collecting and analysing large amounts of data generated by several sources, such as sensor networks, wearable devices, and IoT devices spread among the city. The integration of different technologies and different IT systems, needed to build smart city applications and services, remains the most challenge to overcome. In the Smart City context, this paper intends to investigate the Smart Environment pillar, and in particular the aspect related to the implementation of Smart Energy Grid for citizens in the urban context. The innovative characteristic of the proposed solution consists of using the Blockchain technology to join the Grid, exchanging information, and buy/sell energy between the involved nodes (energy providers and private citizens), using the Blockchain granting ledger

    Theoretical and Computational Basis for Economical Ressource Allocation in Application Layer Networks - Annual Report Year 1

    Get PDF
    This paper identifies and defines suitable market mechanisms for Application Layer Networks (ALNs). On basis of the structured Market Engineering process, the work comprises the identification of requirements which adequate market mechanisms for ALNs have to fulfill. Subsequently, two mechanisms for each, the centralized and the decentralized case are described in this document. --Grid Computing

    The role of communication systems in smart grids: Architectures, technical solutions and research challenges

    Get PDF
    The purpose of this survey is to present a critical overview of smart grid concepts, with a special focus on the role that communication, networking and middleware technologies will have in the transformation of existing electric power systems into smart grids. First of all we elaborate on the key technological, economical and societal drivers for the development of smart grids. By adopting a data-centric perspective we present a conceptual model of communication systems for smart grids, and we identify functional components, technologies, network topologies and communication services that are needed to support smart grid communications. Then, we introduce the fundamental research challenges in this field including communication reliability and timeliness, QoS support, data management services, and autonomic behaviors. Finally, we discuss the main solutions proposed in the literature for each of them, and we identify possible future research directions

    Metaverse: A Vision, Architectural Elements, and Future Directions for Scalable and Realtime Virtual Worlds

    Full text link
    With the emergence of Cloud computing, Internet of Things-enabled Human-Computer Interfaces, Generative Artificial Intelligence, and high-accurate Machine and Deep-learning recognition and predictive models, along with the Post Covid-19 proliferation of social networking, and remote communications, the Metaverse gained a lot of popularity. Metaverse has the prospective to extend the physical world using virtual and augmented reality so the users can interact seamlessly with the real and virtual worlds using avatars and holograms. It has the potential to impact people in the way they interact on social media, collaborate in their work, perform marketing and business, teach, learn, and even access personalized healthcare. Several works in the literature examine Metaverse in terms of hardware wearable devices, and virtual reality gaming applications. However, the requirements of realizing the Metaverse in realtime and at a large-scale need yet to be examined for the technology to be usable. To address this limitation, this paper presents the temporal evolution of Metaverse definitions and captures its evolving requirements. Consequently, we provide insights into Metaverse requirements. In addition to enabling technologies, we lay out architectural elements for scalable, reliable, and efficient Metaverse systems, and a classification of existing Metaverse applications along with proposing required future research directions

    Hybrid clouds for data-Intensive, 5G-Enabled IoT applications: an overview, key issues and relevant architecture

    Get PDF
    Hybrid cloud multi-access edge computing (MEC) deployments have been proposed as efficient means to support Internet of Things (IoT) applications, relying on a plethora of nodes and data. In this paper, an overview on the area of hybrid clouds considering relevant research areas is given, providing technologies and mechanisms for the formation of such MEC deployments, as well as emphasizing several key issues that should be tackled by novel approaches, especially under the 5G paradigm. Furthermore, a decentralized hybrid cloud MEC architecture, resulting in a Platform-as-a-Service (PaaS) is proposed and its main building blocks and layers are thoroughly described. Aiming to offer a broad perspective on the business potential of such a platform, the stakeholder ecosystem is also analyzed. Finally, two use cases in the context of smart cities and mobile health are presented, aimed at showing how the proposed PaaS enables the development of respective IoT applications.Peer ReviewedPostprint (published version
    corecore