209 research outputs found

    AC OPF in Radial Distribution Networks - Parts I,II

    Get PDF
    The optimal power-flow problem (OPF) has played a key role in the planning and operation of power systems. Due to the non-linear nature of the AC power-flow equations, the OPF problem is known to be non-convex, therefore hard to solve. Most proposed methods for solving the OPF rely on approximations that render the problem convex, but that may yield inexact solutions. Recently, Farivar and Low proposed a method that is claimed to be exact for radial distribution systems, despite no apparent approximations. In our work, we show that it is, in fact, not exact. On one hand, there is a misinterpretation of the physical network model related to the ampacity constraint of the lines' current flows. On the other hand, the proof of the exactness of the proposed relaxation requires unrealistic assumptions related to the unboundedness of specific control variables. We also show that the extension of this approach to account for exact line models might provide physically infeasible solutions. Recently, several contributions have proposed OPF algorithms that rely on the use of the alternating-direction method of multipliers (ADMM). However, as we show in this work, there are cases for which the ADMM-based solution of the non-relaxed OPF problem fails to converge. To overcome the aforementioned limitations, we propose an algorithm for the solution of a non-approximated, non-convex OPF problem in radial distribution systems that is based on the method of multipliers, and on a primal decomposition of the OPF. This work is divided in two parts. In Part I, we specifically discuss the limitations of BFM and ADMM to solve the OPF problem. In Part II, we provide a centralized version and a distributed asynchronous version of the proposed OPF algorithm and we evaluate its performances using both small-scale electrical networks, as well as a modified IEEE 13-node test feeder

    An Accelerated Proximal Alternating Direction Method of Multipliers for Optimal Decentralized Control of Uncertain Systems

    Full text link
    To ensure the system stability of the H2\bf{\mathcal{H}_{2}}-guaranteed cost optimal decentralized control problem (ODC), an approximate semidefinite programming (SDP) problem is formulated based on the sparsity of the gain matrix of the decentralized controller. To reduce data storage and improve computational efficiency, the SDP problem is vectorized into a conic programming (CP) problem using the Kronecker product. Then, a proximal alternating direction method of multipliers (PADMM) is proposed to solve the dual of the resulted CP. By linking the (generalized) PADMM with the (relaxed) proximal point algorithm, we are able to accelerate the proposed PADMM via the Halpern fixed-point iterative scheme. This results in a fast convergence rate for the Karush-Kuhn-Tucker (KKT) residual along the sequence generated by the accelerated algorithm. Numerical experiments further demonstrate that the accelerated PADMM outperforms both the well-known CVXOPT and SCS algorithms for solving the large-scale CP problems arising from H2\bf{\mathcal{H}_{2}}-guaranteed cost ODC problems
    • …
    corecore