629 research outputs found

    Robust Distributed Control Protocols for Large Vehicular Platoons with Prescribed Transient and Steady State Performance

    Full text link
    In this paper, we study the longitudinal control problem for a platoon of vehicles with unknown nonlinear dynamics under both the predecessor-following and the bidirectional control architectures. The proposed control protocols are fully distributed in the sense that each vehicle utilizes feedback from its relative position with respect to its preceding and following vehicles as well as its own velocity, which can all be easily obtained by onboard sensors. Moreover, no previous knowledge of model nonlinearities/disturbances is incorporated in the control design, enhancing in that way the robustness of the overall closed loop system against model imperfections. Additionally, certain designer-specified performance functions determine the transient and steady-state response, thus preventing connectivity breaks due to sensor limitations as well as inter-vehicular collisions. Finally, extensive simulation studies and a real-time experiment conducted with mobile robots clarify the proposed control protocols and verify their effectiveness.Comment: IEEE Transactions on Control Systems Technology, accepte

    Synthesis of Distributed Longitudinal Control Protocols for a Platoon of Autonomous Vehicles

    Get PDF
    We develop a framework for control protocol synthesis for a platoon of autonomous vehicles subject to temporal logic specifications. We describe the desired behavior of the platoon in a set of linear temporal logic formulas, such as collision avoidance, close spacing or comfortability. The problem of decomposing a global specification for the platoon into distributed specification for each pair of adjacent vehicles is hard to solve. We use the invariant specifications to tackle this problem and the decomposition is proved to be scalable.. Based on the specifications in Assumption/Guarantee form, we can construct a two-player game (between the vehicle and its closest leader) locally to automatically synthesize a controller protocol for each vehicle. Simulation example for a distributed vehicles control problem is also shown

    Federated Robust Embedded Systems: Concepts and Challenges

    Get PDF
    The development within the area of embedded systems (ESs) is moving rapidly, not least due to falling costs of computation and communication equipment. It is believed that increased communication opportunities will lead to the future ESs no longer being parts of isolated products, but rather parts of larger communities or federations of ESs, within which information is exchanged for the benefit of all participants. This vision is asserted by a number of interrelated research topics, such as the internet of things, cyber-physical systems, systems of systems, and multi-agent systems. In this work, the focus is primarily on ESs, with their specific real-time and safety requirements. While the vision of interconnected ESs is quite promising, it also brings great challenges to the development of future systems in an efficient, safe, and reliable way. In this work, a pre-study has been carried out in order to gain a better understanding about common concepts and challenges that naturally arise in federations of ESs. The work was organized around a series of workshops, with contributions from both academic participants and industrial partners with a strong experience in ES development. During the workshops, a portfolio of possible ES federation scenarios was collected, and a number of application examples were discussed more thoroughly on different abstraction levels, starting from screening the nature of interactions on the federation level and proceeding down to the implementation details within each ES. These discussions led to a better understanding of what can be expected in the future federated ESs. In this report, the discussed applications are summarized, together with their characteristics, challenges, and necessary solution elements, providing a ground for the future research within the area of communicating ESs

    Optimal complementary matrices in systems with overlapping decomposition: a computational approach

    Get PDF
    © 2006 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The paper deals with linear quadratic (LQ) optimal control of linear time-invariant (LTI) systems which are decomposed into overlapped subsystems. A mathematical framework (inclusion principle) is available to formalize different structural properties and relations between the initial and the expanded systems, in which the so called complementary matrices play an important role. Up to now, only the structure and conditions on these matrices have been studied in the literature, but not the way to obtain their numerical values systematically. This paper presents a computational approach to select complementary matrices, which can be useful for a practical use of overlapping decompositions. The specific objective is to obtain the complementary matrices such that the quadratic performance for the expanded optimal control problem is minimum. An example is supplied to illustrate the use of the proposed algorithm.Peer ReviewedPostprint (published version
    • …
    corecore