45,104 research outputs found

    A Simple Decentralized Charging Control Scheme of Plug-in Electric Vehicles for Alleviating Wind Farm Intermittency

    Get PDF
    AbstractVariable power output from large-scale wind farms present new challenge of balancing power system load with generation. To alleviate this problem, this paper proposes a decentralized charging control scheme for plug-in electric vehicles (PEVs) to neutralize wind power fluctuations. In the proposed scheme, each PEV autonomously adjusts its power in response to a real-time directing signal and based on its own urgency level of charging. No intelligent central control entity is needed. Simulation results demonstrate the effectiveness of the proposed charging control in directing PEV power to counteract wind power fluctuations. Also, proportionally fair distribution of counteracting duties among PEVs can be achieved so as to meet heterogeneous charging requirements of PEV users, and the total utility of the PEV fleet is proven to be maximized

    Almost decentralized model predictive control of power networks

    Get PDF
    Stable operation of the electrical power grid in the future will require novel, advanced control techniques for supply and demand matching, as a consequence of the liberalization and decentralization of electrical power generation. Currently, there is an increasing interest for using model predictive control (MPC) for power balancing. However, a centralized implementation of MPC is hampered by the large scale and complexity of power networks. Non-centralized, scalable control schemes are more suited for future application. In this paper we therefore propose a novel almost-decentralized Lyapunov-based predictive control algorithm for power balancing, i.e., for asymptotic stabilization of the network frequency. The algorithm is particularly suited for large-scale power networks, as it requires only local information and limited communication between directly-neighboring control areas to provide a stabilizing control action. We assess the suitability of this scheme and compare it with state-of-the-art non-centralized MPC in a benchmark case study

    Unsplittable Load Balancing in a Network of Charging Stations Under QoS Guarantees

    Get PDF
    The operation of the power grid is becoming more stressed, due to the addition of new large loads represented by Electric Vehicles (EVs) and a more intermittent supply due to the incorporation of renewable sources. As a consequence, the coordination and control of projected EV demand in a network of fast charging stations becomes a critical and challenging problem. In this paper, we introduce a game theoretic based decentralized control mechanism to alleviate negative impacts from the EV demand. The proposed mechanism takes into consideration the non-uniform spatial distribution of EVs that induces uneven power demand at each charging facility, and aims to: (i) avoid straining grid resources by offering price incentives so that customers accept being routed to less busy stations, (ii) maximize total revenue by serving more customers with the same amount of grid resources, and (iii) provide charging service to customers with a certain level of Quality-of-Service (QoS), the latter defined as the long term customer blocking probability. We examine three scenarios of increased complexity that gradually approximate real world settings. The obtained results show that the proposed framework leads to substantial performance improvements in terms of the aforementioned goals, when compared to current state of affairs.Comment: Accepted for Publication in IEEE Transactions on Smart Gri

    Decentralized energy supply and electricity market structures

    Get PDF
    Small decentralized power generation units (DG) are politically promoted because of their potential to reduce GHG-emissions and the existing dependency on fossil fuels. A long term goal of this promotion should be the creation of a level playing field for DG and conventional power generation. Due to the impact of DG on the electricity grid infrastructure, future regulation should consider the costs and benefits of the integration of decentralized energy generation units. Without an adequate consideration, the overall costs of the electricity generation system will be unnecessarily high. The present paper analyses, based on detailed modelling of decentralized demand and supply as well as of the overall system, the marginal costs or savings resulting from decentralized production. Thereby particular focus is laid on taking adequately into account the stochasticity both of energy demand and energy supply. An efficient grid pricing system should then remunerate long-term grid cost savings to operators of decentralized energy production or/and charge long-term additional grid costs to these operators. With detailed models of decentralized demand and supply as well as the overall system, the marginal costs or savings resulting from decentralized production are determined and their dependency on characteristics of the grid and of the decentralized supply are discussed.electricity markets, decentralized power production, demand side management
    corecore