168 research outputs found

    One-bit Compressed Sensing in the Presence of Noise

    Get PDF
    Many modern real-world systems generate large amounts of high-dimensional data stressing the available computing and signal processing systems. In resource-constrained settings, it is desirable to process, store and transmit as little amount of data as possible. It has been shown that one can obtain acceptable performance for tasks such as inference and reconstruction using fewer bits of data by exploiting low-dimensional structures on data such as sparsity. This dissertation investigates the signal acquisition paradigm known as one-bit compressed sensing (one-bit CS) for signal reconstruction and parameter estimation. We first consider the problem of joint sparse support estimation with one-bit measurements in a distributed setting. Each node observes sparse signals with the same but unknown support. The goal is to minimize the probability of error of support estimation. First, we study the performance of maximum likelihood (ML) estimation of the support set from one-bit compressed measurements when all these measurements are available at the fusion center. We provide a lower bound on the number of one-bit measurements required per node for vanishing probability of error. Though the ML estimator is optimal, its computational complexity increases exponentially with the signal dimension. So, we propose computationally tractable algorithms in a centralized setting. Further, we extend these algorithms to a decentralized setting where each node can communicate only with its one-hop neighbors. The proposed method shows excellent estimation performance even in the presence of noise. In the second part of the dissertation, we investigate the problem of sparse signal reconstruction from noisy one-bit compressed measurements using a signal that is statistically dependent on the compressed signal as an aid. We refer to this signal as side-information. We consider a generalized measurement model of one-bit CS where noise is assumed to be added at two stages of the measurement process- a) before quantizationand b) after quantization. We model the noise before quantization as additive white Gaussian noise and the noise after quantization as a sign-flip noise generated from a Bernoulli distribution. We assume that the SI at the receiver is noisy. The noise in the SI can be either in the support or in the amplitude, or both. This nature of the noise in SI suggests that the noise has a sparse structure. We use additive independent and identically distributed Laplacian noise to model such sparse nature of the noise. In this setup, we develop tractable algorithms that approximate the minimum mean square error (MMSE) estimator of the signal. We consider the following three different SI-based scenarios: 1. The side-information is assumed to be a noisy version of the signal. The noise is independent of the signal and follows the Laplacian distribution. We do not assume any temporal dependence in the signal.2. The signal exhibits temporal dependencies between signals at the current time instant and the previous time instant. The temporal dependence is modeled using the birth-death-drift (BDD) model. The side-information is a noisy version of the previous time instant signal, which is statistically dependent on the signal as defined by the BDD model. 3. The SI available at the receiver is heterogeneous. The signal and side-information are from different modalities and may not share joint sparse representation. We assume that the SI and the sparse signal are dependent and use the Copula function to model the dependence. In each of these scenarios, we develop generalized approximate message passing-based algorithms to approximate the minimum mean square error estimate. Numerical results show the effectiveness of the proposed algorithm. In the final part of the dissertation, we propose two one-bit compressed sensing reconstruction algorithms that use a deep neural network as a prior on the signal. In the first algorithm, we use a trained Generative model such as Generative Adversarial Networks and Variational Autoencoders as a prior. This trained network is used to reconstruct the compressed signal from one-bit measurements by searching over its range. We provide theoretical guarantees on the reconstruction accuracy and sample complexity of the presented algorithm. In the second algorithm, we investigate an untrained neural network architecture so that it acts as a good prior on natural signals such as images and audio. We formulate an optimization problem to reconstruct the signal from one-bit measurements using this untrained network. We demonstrate the superior performance of the proposed algorithms through numerical results. Further, in contrast to competing model-based algorithms, we demonstrate that the proposed algorithms estimate both direction and magnitude of the compressed signal from one-bit measurements

    Compressed Sensing based Dynamic PSD Map Construction in Cognitive Radio Networks

    Get PDF
    In the context of spectrum sensing in cognitive radio networks, collaborative spectrum sensing has been proposed as a way to overcome multipath and shadowing, and hence increasing the reliability of the sensing. Due to the high amount of information to be transmitted, a dynamic compressive sensing approach is proposed to map the PSD estimate to a sparse domain which is then transmitted to the fusion center. In this regard, CRs send a compressed version of their estimated PSD to the fusion center, whose job is to reconstruct the PSD estimates of the CRs, fuse them, and make a global decision on the availability of the spectrum in space and frequency domains at a given time. The proposed compressive sensing based method considers the dynamic nature of the PSD map, and uses this dynamicity in order to decrease the amount of data needed to be transmitted between CR sensors’ and the fusion center. By using the proposed method, an acceptable PSD map for cognitive radio purposes can be achieved by only 20 % of full data transmission between sensors and master node. Also, simulation results show the robustness of the proposed method against the channel variations, diverse compression ratios and processing times in comparison with static methods

    Diffusion Adaptation Strategies for Distributed Estimation over Gaussian Markov Random Fields

    Full text link
    The aim of this paper is to propose diffusion strategies for distributed estimation over adaptive networks, assuming the presence of spatially correlated measurements distributed according to a Gaussian Markov random field (GMRF) model. The proposed methods incorporate prior information about the statistical dependency among observations, while at the same time processing data in real-time and in a fully decentralized manner. A detailed mean-square analysis is carried out in order to prove stability and evaluate the steady-state performance of the proposed strategies. Finally, we also illustrate how the proposed techniques can be easily extended in order to incorporate thresholding operators for sparsity recovery applications. Numerical results show the potential advantages of using such techniques for distributed learning in adaptive networks deployed over GMRF.Comment: Submitted to IEEE Transactions on Signal Processing. arXiv admin note: text overlap with arXiv:1206.309

    Distributed UAV Swarm Augmented Wideband Spectrum Sensing Using Nyquist Folding Receiver

    Full text link
    Distributed unmanned aerial vehicle (UAV) swarms are formed by multiple UAVs with increased portability, higher levels of sensing capabilities, and more powerful autonomy. These features make them attractive for many recent applica-tions, potentially increasing the shortage of spectrum resources. In this paper, wideband spectrum sensing augmented technology is discussed for distributed UAV swarms to improve the utilization of spectrum. However, the sub-Nyquist sampling applied in existing schemes has high hardware complexity, power consumption, and low recovery efficiency for non-strictly sparse conditions. Thus, the Nyquist folding receiver (NYFR) is considered for the distributed UAV swarms, which can theoretically achieve full-band spectrum detection and reception using a single analog-to-digital converter (ADC) at low speed for all circuit components. There is a focus on the sensing model of two multichannel scenarios for the distributed UAV swarms, one with a complete functional receiver for the UAV swarm with RIS, and another with a decentralized UAV swarm equipped with a complete functional receiver for each UAV element. The key issue is to consider whether the application of RIS technology will bring advantages to spectrum sensing and the data fusion problem of decentralized UAV swarms based on the NYFR architecture. Therefore, the property for multiple pulse reconstruction is analyzed through the Gershgorin circle theorem, especially for very short pulses. Further, the block sparse recovery property is analyzed for wide bandwidth signals. The proposed technology can improve the processing capability for multiple signals and wide bandwidth signals while reducing interference from folded noise and subsampled harmonics. Experiment results show augmented spectrum sensing efficiency under non-strictly sparse conditions

    Distributed Quantization for Sparse Time Sequences

    Full text link
    Analog signals processed in digital hardware are quantized into a discrete bit-constrained representation. Quantization is typically carried out using analog-to-digital converters (ADCs), operating in a serial scalar manner. In some applications, a set of analog signals are acquired individually and processed jointly. Such setups are referred to as distributed quantization. In this work, we propose a distributed quantization scheme for representing a set of sparse time sequences acquired using conventional scalar ADCs. Our approach utilizes tools from secure group testing theory to exploit the sparse nature of the acquired analog signals, obtaining a compact and accurate representation while operating in a distributed fashion. We then show how our technique can be implemented when the quantized signals are transmitted over a multi-hop communication network providing a low-complexity network policy for routing and signal recovery. Our numerical evaluations demonstrate that the proposed scheme notably outperforms conventional methods based on the combination of quantization and compressed sensing tools

    Sparse Representation for Wireless Communications:A Compressive Sensing Approach

    Get PDF
    Sparse representation can efficiently model signals in different applications to facilitate processing. In this article, we will discuss various applications of sparse representation in wireless communications, with a focus on the most recent compressive sensing (CS)-enabled approaches. With the help of the sparsity property, CS is able to enhance the spectrum efficiency (SE) and energy efficiency (EE) of fifth-generation (5G) and Internet of Things (IoT) networks
    corecore