544 research outputs found

    Observer-based adaptive sliding mode fault-tolerant control for the underactuated space robot with joint actuator gain faults

    Get PDF
    summary:An adaptive sliding mode fault-tolerant controller based on fault observer is proposed for the space robots with joint actuator gain faults. Firstly, the dynamic model of the underactuated space robot is deduced combining conservation law of linear momentum with Lagrange method. Then, the dynamic model of the manipulator joints is obtained by using the mathematical operation of the block matrices, hence the measurement of the angular acceleration of the base attitude can be omitted. Subsequently, a fault observer which can accurately estimate the gain faults is designed, and the estimated results are fed back to the adaptive sliding mode fault-tolerant controller. It is proved that the proposed control algorithm can guarantee the global asymptotic stability of the closed-loop system through the Lyapunov theorem. The simulation results authenticate the effectiveness and feasibility of the control strategy and observation scheme

    Adaptive NN Control for Multisteering Plane Aircraft with Dead Zone or Backlash Input Nonlinearity

    Get PDF
    Considering that many factors such as actuator input dead zone, backlash, and external disturbance could affect the exactness of trajectory tracking, therewith a robust adaptive neural network control scheme on the basis of control allocation is proposed for the sake of tracking control of multisteering plane aircraft with actuator input dead zone or backlash nonlinearity. First of all, an actuator input dead zone or backlash nonlinearity control assignment model is established and the control allocation equation is derived. Secondly, the system nonlinear uncertainty is compensated by means of radial basis function neural network, and a robust term is introduced to achieve robustness against external disturbance and system errors. Finally, by utilizing Lyapunov stability theorem, it has been proved that all the signals in the closed-loop system are bounded, and the tracking error converges to a small residual set asymptotically. Simulation results on ICE101 multisteering plane aircraft demonstrate the outstanding tracking performance and strong robustness as well as effectiveness of the proposed approach, which can effectively overcome the adverse influence of dead zone, backlash nonlinearity, and external disturbance on the system

    Adaptive Approximation-Based Control for Nonlinear Systems: A Unified Solution with Accurate and Inaccurate Measurements

    Full text link
    A unified solution to adaptive approximation-based control for nonlinear systems with accurate and inaccurate state measurement is synthesized in this study. Starting from the standard adaptive approximation-based controller with accurate state measurement, its corresponding physical interpretation, stability conclusion, and learning ability are rigorously addressed when facing additive measurement inaccuracy, and explicit answers are obtained in the framework of both controller matching and system matching. Finally, it proves that, with a certain condition, the standard adaptive approximation-based controller works as a unified solution for the cases with accurate and inaccurate measurement, and the solution can be extended to the nonlinear system control problems with extra unknown dynamics or faults in actuator and/or process dynamics. A single-link robot arm example is used for the simulation demonstration of the unified solution

    A Survey of Decentralized Adaptive Control

    Get PDF

    Decentralized sliding mode control and estimation for large-scale systems

    Get PDF
    This thesis concerns the development of an approach of decentralised robust control and estimation for large scale systems (LSSs) using robust sliding mode control (SMC) and sliding mode observers (SMO) theory based on a linear matrix inequality (LMI) approach. A complete theory of decentralized first order sliding mode theory is developed. The main developments proposed in this thesis are: The novel development of an LMI approach to decentralized state feedback SMC. The proposed strategy has good ability in combination with other robust methods to fulfill specific performance and robustness requirements. The development of output based SMC for large scale systems (LSSs). Three types of novel decentralized output feedback SMC methods have been developed using LMI design tools. In contrast to more conventional approaches to SMC design the use of some complicated transformations have been obviated. A decentralized approach to SMO theory has been developed focused on the Walcott-Żak SMO combined with LMI tools. A derivation for bounds applicable to the estimation error for decentralized systems has been given that involves unknown subsystem interactions and modeling uncertainty. Strategies for both actuator and sensor fault estimation using decentralized SMO are discussed.The thesis also provides a case study of the SMC and SMO concepts applied to a non-linear annealing furnace system modelderived from a distributed parameter (partial differential equation) thermal system. The study commences with a lumped system decentralised representation of the furnace derived from the partial differential equations. The SMO and SMC methods derived in the thesis are applied to this lumped parameter furnace model. Results are given demonstrating the validity of the methods proposed and showing a good potential for a valuable practical implementation of fault tolerant control based on furnace temperature sensor faults

    Control of an IPMC soft actuator using adaptive full-order recursive terminal sliding mode

    Get PDF
    The ionic polymer metal composite (IPMC) actuator is a kind of soft actuator that can work for underwater applications. However, IPMC actuator control suffers from high nonlinearity due to the existence of inherent creep and hysteresis phenomena. Furthermore, for underwater applications, they are highly exposed to parametric uncertainties and external disturbances due to the inherent characteristics and working environment. Those factors significantly affect the positioning accuracy and reliability of IPMC actuators. Hence, feedback control techniques are vital in the control of IPMC actuators for suppressing the system uncertainty and external disturbance. In this paper, for the first time an adaptive full-order recursive terminal sliding-mode (AFORTSM) controller is proposed for the IPMC actuator to enhance the positioning accuracy and robustness against parametric uncertainties and external disturbances. The proposed controller incorporates an adaptive algorithm with terminal sliding mode method to release the need for any prerequisite bound of the disturbance. In addition, stability analysis proves that it can guarantee the tracking error to converge to zero in finite time in the presence of uncertainty and disturbance. Experiments are carried out on the IPMC actuator to verify the practical effectiveness of the AFORTSM controller in comparison with a conventional nonsingular terminal sliding mode (NTSM) controller in terms of smaller tracking error and faster disturbance rejection

    Model based fault diagnosis and prognosis of nonlinear systems

    Get PDF
    Rapid technological advances have led to more and more complex industrial systems with significantly higher risk of failures. Therefore, in this dissertation, a model-based fault diagnosis and prognosis framework has been developed for fast and reliable detection of faults and prediction of failures in nonlinear systems. In the first paper, a unified model-based fault diagnosis scheme capable of detecting both additive system faults and multiplicative actuator faults, as well as approximating the fault dynamics, performing fault type determination and time-to-failure determination, is designed. Stability of the observer and online approximator is guaranteed via an adaptive update law. Since outliers can degrade the performance of fault diagnostics, the second paper introduces an online neural network (NN) based outlier identification and removal scheme which is then combined with a fault detection scheme to enhance its performance. Outliers are detected based on the estimation error and a novel tuning law prevents the NN weights from being affected by outliers. In the third paper, in contrast to papers I and II, fault diagnosis of large-scale interconnected systems is investigated. A decentralized fault prognosis scheme is developed for such systems by using a network of local fault detectors (LFD) where each LFD only requires the local measurements. The online approximators in each LFD learn the unknown interconnection functions and the fault dynamics. Derivation of robust detection thresholds and detectability conditions are also included. The fourth paper extends the decentralized fault detection from paper III and develops an accommodation scheme for nonlinear continuous-time systems. By using both detection and accommodation online approximators, the control inputs are adjusted in order to minimize the fault effects. Finally in the fifth paper, the model-based fault diagnosis of distributed parameter systems (DPS) with parabolic PDE representation in continuous-time is discussed where a PDE-based observer is designed to perform fault detection as well as estimating the unavailable system states. An adaptive online approximator is incorporated in the observer to identify unknown fault parameters. Adaptive update law guarantees the convergence of estimations and allows determination of remaining useful life --Abstract, page iv

    Supervisory-plus-regulatory control design for efficient operation of industrial furnaces

    Get PDF
    A two-level system engineering design approach to integrated control and supervision of industrial multi-zone furnaces has been elaborated and tested. The application case study is the three-zone 25 MW RZS furnace plant at Skopje Steelworks. The integrated control and supervision design is based on combined use of general predictive control optimization of set-points and steady-state decoupling,at the upper level, and classical two-term laws with stady-state decouling, at the executive control level. This design technique exploits the intrinsic stability of thermal processes and makes use of constrained optimization, standard non-parametric time-domain process models, identified under operating conditions, using truncated k-time sequence matrices, controlled autoregressive moving average models. Digital implementations are sought within standard computer process control platform for practical engineering and maintenance reasons
    corecore