163 research outputs found

    Certifying Stability and Performance of Uncertain Differential-Algebraic Systems: A Dissipativity Framework

    Full text link
    This paper presents a novel framework for characterizing dissipativity of uncertain dynamical systems subject to algebraic constraints. The main results provide sufficient conditions for dissipativity when uncertainties are characterized by integral quadratic constraints. For polynomial or linear dynamics, these conditions can be efficiently verified through sum-of-squares or semidefinite programming. The practical impact of this work is illustrated through a case study that examines performance of the IEEE 39-bus power network with uncertainties used to model a set of potential line failures

    Distributed Data-driven Predictive Control via Dissipative Behavior Synthesis

    Full text link
    This paper presents a distributed data-driven predictive control (DDPC) approach using the behavioral framework. It aims to design a network of controllers for an interconnected system with linear time-invariant (LTI) subsystems such that a given global (network-wide) cost function is minimized while desired control performance (e.g., network stability and disturbance rejection) is achieved using dissipativity in the quadratic difference form (QdF). By viewing dissipativity as a behavior and integrating it into the control design as a virtual dynamical system, the proposed approach carries out the entire design process in a unified framework with a set-theoretic viewpoint. This leads to an effective data-driven distributed control design, where the global design goal can be achieved by distributed optimization based on the local QdF conditions. The approach is illustrated by an example throughout the paper

    On some dynamic properties of electrical power systems : sobre algunas propiedades dinámicas de los sistemas eléctricos de potencia

    Get PDF
    This thesis treats some dynamic properties of power system models. An extension of the classical concept of dissipativity is formulated to deal with these systems described by differential-algebraic equations on phasor variables. A class of models of these systems the same that is known to admit an energy function is shown to be dissipative in the sense mentioned above, to later be extended to include realistic models of synchronous machines and other devices. The small signal models are shown to satisfy a convex constraint in the frequency domain that is later articulated with Integral Quadratic Constraints, a well-known stability analysis tool. Specific features of realistic power system models, as the effect of voltage regulation and damping injection, are precisely captured and incorporated into the analysis. It is shown that a trade-off between the mentioned control actions and the voltage sensitivity is a sufficient condition to establish the robustness of the electromechanical modes. This result and others mentioned above are validated through several examples.Esta tesis trata algunas propiedades dinámicas de los sistemas eléctricos de potencia. Se formula una extensión del concepto clásico de disipatividad compatible con estos sistemas, descritos por ecuaciones algebraico-diferenciales sobre variables fasoriales. Se muestra que una clase de modelos de estos sistemas satisface este concepto de disipatividad y se muestra que también lo hacen modelos detallados de máquinas síncronas y otros dispositivos de potencia. Se demuestra que los modelos en pequeña señal satisfacen una restricción convexa en el dominio de la frecuencia, capaz de ser articulada con herramientas bien conocidas de análisis de estabilidad. Características específicas de los sistemas eléctricos reales, tales como la acción de la regulación de tensión y las señales estabilizadoras, son precisamente definidas e incorporadas al análisis. Se demuestra que un adecuado balance entre las acciones de control mencionadas y la sensibilidad a variaciones de tensión es una condición suficiente para la robustez de los modos electromecánicos del sistema. Este resultado y otros mencionados anteriormente son validados mediante el análisis de varios ejemplos

    Control Theory: A Mathematical Perspective on Cyber-Physical Systems

    Get PDF
    Control theory is an interdisciplinary field that is located at the crossroads of pure and applied mathematics with systems engineering and the sciences. Recently the control field is facing new challenges motivated by application domains that involve networks of systems. Examples are interacting robots, networks of autonomous cars or the smart grid. In order to address the new challenges posed by these application disciplines, the special focus of this workshop has been on the currently very active field of Cyber-Physical Systems, which forms the underlying basis for many network control applications. A series of lectures in this workshop was devoted to give an overview on current theoretical developments in Cyber-Physical Systems, emphasizing in particular the mathematical aspects of the field. Special focus was on the dynamics and control of networks of systems, distributed optimization and formation control, fundamentals of nonlinear interconnected systems, as well as open problems in control

    Limited-Communication Distributed Model Predictive Control for HVAC Systems

    Get PDF
    This dissertation proposes a Limited-Communication Distributed Model Predictive Control algorithm for networks with constrained discrete-time linear processes as local subsystems. The introduced algorithm has an iterative and cooperative framework with neighbor-to-neighbor communication structure. Convergence to a centralized solution is guaranteed by requiring coupled subsystems with local information to cooperate only. During an iteration, a local controller exchanges its predicted effects with local neighbors (which are treated as measured input disturbances in local dynamics) and receives the neighbor sensitivities for these effects at next iteration. Then the controller minimizes a local cost function that counts for the future effects to neighbors weighted by the received sensitivity information. Distributed observers are employed to estimate local states through local input-output signals. Closed-loop stability is proved for sufficiently long horizons. To reduce the computational loads associated with large horizons, local decisions are parametrized by Laguerre functions. A local agent can also reduce the communication burden by parametrizing the communicated data with Laguerre sequences. So far, convergence and closed-loop stability of the algorithm are proven under the assumptions of accessing all subsystem dynamics and cost functions information by a centralized monitor and sufficient number of iterations per sampling. However, these are not mild assumptions for many applications. To design a local convergence condition or a global condition that requires less information, tools from dissipativity theory are used. Although they are conservative conditions, the algorithm convergence can now be ensured either by requiring a distributed subsystem to show dissipativity in the local information dynamic inputs-outputs with gain less than unity or solving a global dissipative inequality with subsystem dissipativity gains and network topology only. Free variables are added to the local problems with the object of having freedom to design such convergence conditions. However, these new variables will result into a suboptimal algorithm that affects the proposed closed-loop stability. To ensure local MPC stability, therefore, a distributed synthesis, which considers the system interactions, of stabilizing terminal costs is introduced. Finally, to illustrate the aspects of the algorithm, coupled tank process and building HVAC system are used as application examples

    Structure Exploitation in Mixed-Integer Optimization with Applications to Energy Systems

    Get PDF
    Das Ziel dieser Arbeit ist neue numerische Methoden für gemischt-ganzzahlige Optimierungsprobleme zu entwickeln um eine verbesserte Geschwindigkeit und Skalierbarkeit zu erreichen. Dies erfolgt durch Ausnutzung gängiger Problemstrukturen wie separierbarkeit oder Turnpike-eigenschaften. Methoden, die diese Strukturen ausnutzen können, wurden bereits im Bereich der verteilten Optimierung und optimalen Steuerung entwickelt, sie sind jedoch nicht direkt auf gemischt-ganztägige Probleme anwendbar. Um verteilte Rechenressourcen zur Lösung von gemischt-ganzzahligen Problemen nutzen zu können, sind neue Methoden erforderlich. Zu diesem Zweck werden verschiedene Erweiterungen bestehender Methoden sowie neuartige Techniken zur gemischt-ganzzahligen Optimierung vorgestellt. Benchmark-Probleme aus Strom- und Energiesystemen werden verwendet, um zu demonstrieren, dass die vorgestellten Methoden zu schnelleren Laufzeiten führen und die Lösung großer Probleme ermöglichen, die sonst nicht zentral gelöst werden können. Die vorliegende Arbeit enthält die folgenden Beiträge: - Eine Erweiterung des Augmented Lagrangian Alternating Direction Inexact Newton-Algorithmus zur verteilten Optimierung für gemischt-ganzzahlige Probleme. - Ein neuer, teilweise-verteilter Optimierungsalgorithmus für die gemischt-ganzzahlige Optimierung basierend auf äußeren Approximationsverfahren. - Ein neuer Optimierungsalgorithmus für die verteilte gemischt-ganzzahlige Optimierung, der auf branch-and-bound Verfahren basiert. - Eine erste Untersuchung von Turnpike-Eigenschaften bei Optimalsteuerungsproblemen mit gemischten-Ganzzahligen Entscheidungsgrößen und ein spezieller Algorithmus zur Lösung dieser Probleme. - Eine neue Branch-and-Bound Heuristik, die a priori Probleminformationen effizienter nutzt als aktuelle Warmstarttechniken. Schließlich wird gezeigt, dass die Ergebnisse der vorgestellten Optimierungsalgorithmen für verteilte gemischt-ganzzahlige Optimierung stark Partitionierungsabhängig sind. Zu diesem Zweck wird auch eine Untersuchung von Partitionierungsmethoden für die verteilte Optimierung vorgestellt
    corecore