13 research outputs found

    Security Risk Management for the Internet of Things

    Get PDF
    In recent years, the rising complexity of Internet of Things (IoT) systems has increased their potential vulnerabilities and introduced new cybersecurity challenges. In this context, state of the art methods and technologies for security risk assessment have prominent limitations when it comes to large scale, cyber-physical and interconnected IoT systems. Risk assessments for modern IoT systems must be frequent, dynamic and driven by knowledge about both cyber and physical assets. Furthermore, they should be more proactive, more automated, and able to leverage information shared across IoT value chains. This book introduces a set of novel risk assessment techniques and their role in the IoT Security risk management process. Specifically, it presents architectures and platforms for end-to-end security, including their implementation based on the edge/fog computing paradigm. It also highlights machine learning techniques that boost the automation and proactiveness of IoT security risk assessments. Furthermore, blockchain solutions for open and transparent sharing of IoT security information across the supply chain are introduced. Frameworks for privacy awareness, along with technical measures that enable privacy risk assessment and boost GDPR compliance are also presented. Likewise, the book illustrates novel solutions for security certification of IoT systems, along with techniques for IoT security interoperability. In the coming years, IoT security will be a challenging, yet very exciting journey for IoT stakeholders, including security experts, consultants, security research organizations and IoT solution providers. The book provides knowledge and insights about where we stand on this journey. It also attempts to develop a vision for the future and to help readers start their IoT Security efforts on the right foot

    An artificial intelligence-based collaboration approach in industrial IoT manufacturing : key concepts, architectural extensions and potential applications

    Get PDF
    The digitization of manufacturing industry has led to leaner and more efficient production, under the Industry 4.0 concept. Nowadays, datasets collected from shop floor assets and information technology (IT) systems are used in data-driven analytics efforts to support more informed business intelligence decisions. However, these results are currently only used in isolated and dispersed parts of the production process. At the same time, full integration of artificial intelligence (AI) in all parts of manufacturing systems is currently lacking. In this context, the goal of this manuscript is to present a more holistic integration of AI by promoting collaboration. To this end, collaboration is understood as a multi-dimensional conceptual term that covers all important enablers for AI adoption in manufacturing contexts and is promoted in terms of business intelligence optimization, human-in-the-loop and secure federation across manufacturing sites. To address these challenges, the proposed architectural approach builds on three technical pillars: (1) components that extend the functionality of the existing layers in the Reference Architectural Model for Industry 4.0; (2) definition of new layers for collaboration by means of human-in-the-loop and federation; (3) security concerns with AI-powered mechanisms. In addition, system implementation aspects are discussed and potential applications in industrial environments, as well as business impacts, are presented

    Security and blockchain convergence with internet of multimedia things : current trends, research challenges and future directions

    Get PDF
    The Internet of Multimedia Things (IoMT) orchestration enables the integration of systems, software, cloud, and smart sensors into a single platform. The IoMT deals with scalar as well as multimedia data. In these networks, sensor-embedded devices and their data face numerous challenges when it comes to security. In this paper, a comprehensive review of the existing literature for IoMT is presented in the context of security and blockchain. The latest literature on all three aspects of security, i.e., authentication, privacy, and trust is provided to explore the challenges experienced by multimedia data. The convergence of blockchain and IoMT along with multimedia-enabled blockchain platforms are discussed for emerging applications. To highlight the significance of this survey, large-scale commercial projects focused on security and blockchain for multimedia applications are reviewed. The shortcomings of these projects are explored and suggestions for further improvement are provided. Based on the aforementioned discussion, we present our own case study for healthcare industry: a theoretical framework having security and blockchain as key enablers. The case study reflects the importance of security and blockchain in multimedia applications of healthcare sector. Finally, we discuss the convergence of emerging technologies with security, blockchain and IoMT to visualize the future of tomorrow's applications. © 2020 Elsevier Lt

    Blockchain Technology for Secure Accounting Management: Research Trends Analysis

    Get PDF
    The scope of blockchain technology, initially associated with the cryptocurrency Bitcoin, is greater due to the multiple applications in various disciplines. Its use in accounting lies mainly in the fact that it reduces risks and the eventuality of fraud, eliminates human error, promotes efficiency, and increases transparency and reliability. This means that different economic sectors assume it as a recording and management instrument. The aim is to examine current and emerging research lines at a global level on blockchain technology for secure accounting management. The evolution of the publication of the number of articles between 2016 and 2020 was analyzed. Statistical and mathematical techniques were applied to a sample of 1130 records from the Scopus database. The data uncovered a polynomial trend in this period. The seven main lines of work were identified: blockchain, network security, information management, digital storage, edge computing, commerce, and the Internet of Things. The ten most outstanding emerging research lines are detected. This study provides the past and future thematic axes on this incipient field of knowledge, which is a tool for decision-making by academics, researchers, and directors of research investment program

    Exploring Blockchain Technology through a Modular Lens: A Survey

    Get PDF
    Blockchain has attracted significant attention in recent years due to its potential to revolutionize various industries by providing trustlessness. To comprehensively examine blockchain systems, this article presents both a macro-level overview on the most popular blockchain systems, and a micro-level analysis on a general blockchain framework and its crucial components. The macro-level exploration provides a big picture on the endeavors made by blockchain professionals over the years to enhance the blockchain performance while the micro-level investigation details the blockchain building blocks for deep technology comprehension. More specifically, this article introduces a general modular blockchain analytic framework that decomposes a blockchain system into interacting modules and then examines the major modules to cover the essential blockchain components of network, consensus, and distributed ledger at the micro-level. The framework as well as the modular analysis jointly build a foundation for designing scalable, flexible, and application-adaptive blockchains that can meet diverse requirements. Additionally, this article explores popular technologies that can be integrated with blockchain to expand functionality and highlights major challenges. Such a study provides critical insights to overcome the obstacles in designing novel blockchain systems and facilitates the further development of blockchain as a digital infrastructure to service new applications

    A Distributed Ledger based infrastructure for Intelligent Transportation Systems

    Get PDF
    Intelligent Transportation Systems (ITS) are proposed as an efficient way to improve performances in transportation systems applying information, communication, and sensor technologies to vehicles and transportation infrastructures. The great amount of vehicles produced data, indeed, can potentially lead to a revolution in ITS development, making them more powerful multifunctional systems. To this purpose, the use of Vehicular Ad-hoc Networks (VANETs) can provide comfort and security to drivers through reliable communications. Meanwhile, distributed ledgers have emerged in recent years radically evolving the way that we used to consider finance, trust in communication and even renewing the concept of data sharing and allowing to establish autonomous, secured, trusted and decentralized systems. In this work an ITS infrastructure based on the combination of different emerging Distributed Ledger Technologies (DLTs) and VANETs is proposed, resulting in a transparent, self-managed and self-regulated system, that is not fully managed by a central authority. The intended design is focused on the user ability to use any type of DLT-based application and to transact using Smart Contracts, but also on the access control and verification over user’s vehicle produced data. Users "smart" transactions are achieved thanks to the Ethereum blockchain, widely used for distributed trusted computation, whilst data sharing and data access is possible thanks to the use of IOTA, a DLT fully designed to operate in the Internet of Things landscape, and IPFS, a protocol and a network that allows to work in a distributed file system. The aim of this thesis is to create a ready-to-work infrastructure based on the hypothesis that every user in the ITS must be able to participate. To evaluate the proposal, an infrastructure implementation is used in different real world use cases, common in Smart Cities and related to the ITS, and performance measurements are carried out for DLTs used

    Trustless communication across distributed ledgers: impossibility and practical solutions

    Get PDF
    Since the advent of Bitcoin as the first decentralized digital currency in 2008, a plethora of distributed ledgers has been created, differing in design and purpose. Considering the heterogeneous nature of these systems, it is safe to say there shall not be ``one coin to rule them all". However, despite the growing and thriving ecosystem, blockchains continue to operate almost exclusively in complete isolation from one another: by design, blockchain protocols provide no means by which to communicate or exchange data with external systems. To this date, centralized providers hence remain the preferred route to exchange assets and information across blockchains~-- undermining the very nature of decentralized currencies. The contribution of this thesis is threefold. First, we critically evaluate the (im)possibilty, requirements, and challenges of cross-chain communication by contributing the first systematization of this field. We formalize the problem of Cross-Chain Communication (CCC) and show it is impossible without a trusted third party by relating CCC to the Fair Exchange problem. With this impossibility result in mind, we develop a framework to design new and evaluate existing CCC protocols, focusing on the inherent trust assumptions thereof, and derive a classification covering the field of cross-chain communication to date. We then present XCLAIM, the first generic framework for transferring assets and information across permissionless distributed ledgers without relying on a centralized third party. XCLAIM leverages so-called cryptocurrency-backed assets, blockchain-based assets one-to-one backed by other cryptocurrencies, such as Bitcoin-backed tokens on Ethereum. Through the secure issuance, transfer, and redemption of these assets, users can perform cross-chain exchanges in a financially trustless and non-interactive manner, overcoming the limitations of existing solutions. To ensure the security of user funds, XCLAIM relies on collateralization of intermediaries and a proof-or-punishment approach, enforced via smart contracts equipped with cross-chain light clients, so-called chain relays. XCLAIM has been adopted in practice, among others by the Polkadot blockchain, as a bridge to Bitcoin and other cryptocurrencies. Finally, we contribute to advancing the state of the art in cross-chain light clients. We develop TxChain, a novel mechanism to significantly reduce storage and bandwidth costs of modern blockchain light clients using contingent transaction aggregation, and apply our scheme to Bitcoin and Ethereum individually, as well as in the cross-chain setting.Open Acces

    Blockchain-based Trust and Reputation Management for Securing IoT

    Full text link
    The Internet of Things (IoT) brings connectivity to a large number of heterogeneous devices, many of which may not be trustworthy. Classical authorisation schemes can protect the network from adversaries. However, these schemes could not ascertain in situ reliability and trustworthiness of authorised nodes, as these schemes do not monitor nodes’ behaviour over the operational period. IoT nodes can be compromised post-authentication, which could impede the resiliency of the network. Trust and Reputation Managements (TRM) have the potential to overcome these issues. However, conventional centralised TRM have poor transparency and suffer from sin gle point of failures. In recent years, blockchains show promise in addressing these issues, due to the salient features, such as decentralisation, auditability and transparency. This thesis presents decentralised TRM frameworks to address specific trust issues and challenges in three core IoT functionalities. First, a TRM framework for IoT access control is proposed to address issues in conventional authorisation schemes, in which static predefined access policies are continuously enforced. The enforcements of static access policies assume that the access requestors always exhibit benign behaviour. However, in practice some requestors may actually be malicious and attempt to deceive the access policies, which raises an urgency in building an adaptive access control. In this framework, the nodes’ behaviour are progressively evaluated based on their adherence to the access control policies, and quantified into trust and reputation scores, which are then incorporated in the access control to achieve dynamic access control policies. The framework is implemented on a public Ethereum test-network interconnected with a private lab-scale network of Raspberry Pi computers. The experimental results show that the framework achieves consistent processing latencies and is feasible for implementing effective access control in decentralised IoT networks. Second, a TRM framework for blockchain-based Collaborative Intrusion Detection Systems (CIDS) is presented with an emphasis on the importance of building end-to-end trust between CIDS nodes. In a CIDS, each node contributes detection rules aiming to build collective knowledge of new attacks. Here, the TRM framework assigns trust scores to each contribution from various nodes, using which the trust- worthiness of each node is determined. These scores help protect the CIDS network from invalid detection rules, which may degrade the accuracy of attack detection. A proof-of-concept implementation of the framework is developed on a private labscale Ethereum network. The experimental results show that the solution is feasible and performs within the expected benchmarks of the Ethereum platform. Third, a TRM framework for decentralised resource sharing in 6G-enabled IoT networks is proposed, aiming to remove the inherent risks of sharing scarce resources, especially when most nodes in the network are unknown or untrusted. The proposed TRM framework helps manage the matching of resource supply and demand; and evaluates the trustworthiness of each node after the completion of the resource sharing task. The experimental results on a lab-scale proof-of-concept implementation demonstrate the feasibility of the framework as it only incurs insignificant overheads with regards to gas consumption and overall latency
    corecore