19 research outputs found

    Simultaneous Wireless Information and Power Transfer Based on Generalized Triangular Decomposition

    Get PDF
    The rapidly growing number of wireless devices has raised the need for designing self-sustained wireless systems. Simultaneous wireless information and power transfer (SWIPT) has been advocated as a promising solution. Various approaches have emerged to design wireless systems that enable SWIPT. In this thesis, we propose a novel approach for spatial switching (SS) based SWIPT using the generalized triangular decomposition (GTD) for point-to-point multiple-input-multiple-output (MIMO) systems. The GTD structure allows the transmitter to use the highest gain subchannels jointly for energy and information transmissions and these joint transmissions can be separated at the receiver. We first derive the optimal GTD structure to attain optimal performance in SS based SWIPT systems. This structure is then extended to design three novel transceivers where each transceiver achieves a certain objective and meets specific constraints. The first transceiver focuses on minimizing the total transmitted power while satisfying the energy harvesting and data rate constraints at the receiver. The second transceiver targets the data rate maximization while meeting a certain amount of energy at the receiver. The third transceiver considers the energy harvesting maximization and guarantees to satisfy the required data rate constraint. The proposed transceivers are designed assuming two transmitted power constraints at the transmitter; the instantaneous total transmit power and the limited transmit power per subchannel. For each designed transceiver, optimal and/or suboptimal solutions are developed to obtain joint power allocation and subchannel assignment under a linear energy harvesting model. Additionally, a novel extension to the SS based SWIPT system is proposed considering a non-linear energy harvesting model. Thereafter, the case of maximizing the energy harvesting for a given data rate and instantaneous total transmitted power constraints is studied. A solution is developed that obtains jointly the optimal power allocation and the subchannel assignment alongside the optimal and/or suboptimal split ratios at the energy harvesters. The theoretical and simulation results show that our novel proposed GTD designs for both linear and non-linear energy harvesting models outperform the state-of-the-art singular value decomposition (SVD) based SWIPT designs

    Privacy preservation via beamforming for NOMA

    Get PDF
    Non-orthogonal multiple access (NOMA) has been proposed as a promising multiple access approach for 5G mobile systems because of its superior spectrum efficiency. However, the privacy between the NOMA users may be compromised due to the transmission of a superposition of all users’ signals to successive interference cancellation (SIC) receivers. In this paper, we propose two schemes based on beamforming optimization for NOMA that can enhance the security of a specific private user while guaranteeing the other users’ quality of service (QoS). Specifically, in the first scheme, when the transmit antennas are inadequate, we intend to maximize the secrecy rate of the private user, under the constraint that the other users’ QoS is satisfied. In the second scheme, the private user’s signal is zero-forced at the other users when redundant antennas are available. In this case, the transmission rate of the private user is also maximized while satisfying the QoS of the other users. Due to the nonconvexity of optimization in these two schemes, we first convert them into convex forms and then, an iterative algorithm based on the ConCave-Convex Procedure is proposed to obtain their solutions. Extensive simulation results are presented to evaluate the effectiveness of the proposed scheme

    Reconfigurable Intelligent Surfaces in Challenging Environments: Underwater, Underground, Industrial and Disaster

    Get PDF
    Reconfigurable intelligent surfaces (RISs) have been introduced to improve the signal propagation characteristics by focusing the signal power in the preferred direction, thus making the communication environment "smart". The typical use cases and applications for the "smart" environment include beyond 5G communication networks, smart cities, etc. The main advantage of employing RISs in such networks is a more efficient exploitation of spatial degrees of freedom. This advantage manifests in better interference mitigation as well as increased spectral and energy efficiency due to passive beam steering. Challenging environments comprise a range of scenarios, which share the fact that it is extremely difficult to establish a communication link using conventional technology due to many impairments typically associated with the propagation medium and increased signal scattering. Although the challenges for the design of communication networks, and specifically the Internet of Things (IoT), in such environments are known, there is no common enabler or solution for all these applications. Interestingly, the use of RISs in such scenarios can become such an enabler and a game changer technology. Surprisingly, the benefits of RIS for wireless networking in underwater and underground medium as well as in industrial and disaster environments have not been addressed yet. In this paper, we aim at filling this gap by discussing potential use cases, deployment strategies and design aspects for RIS devices in underwater IoT, underground IoT as well as Industry 4.0 and emergency networks. In addition, novel research challenges to be addressed in this context are described.Comment: 16 pages, 13 figures, submitted for publication in IEEE journa

    Recent Advances in Acquiring Channel State Information in Cellular MIMO Systems

    Get PDF
    In cellular multi-user multiple input multiple output (MU-MIMO) systems the quality of the available channel state information (CSI) has a large impact on the system performance. Specifically, reliable CSI at the transmitter is required to determine the appropriate modulation and coding scheme, transmit power and the precoder vector, while CSI at the receiver is needed to decode the received data symbols. Therefore, cellular MUMIMO systems employ predefined pilot sequences and configure associated time, frequency, code and power resources to facilitate the acquisition of high quality CSI for data transmission and reception. Although the trade-off between the resources used user data transmission has been known for long, the near-optimal configuration of the vailable system resources for pilot and data transmission is a topic of current research efforts. Indeed, since the fifth generation of cellular systems utilizes heterogeneous networks in which base stations are equipped with a large number of transmit and receive antennas, the appropriate configuration of pilot-data resources becomes a critical design aspect. In this article, we review recent advances in system design approaches that are designed for the acquisition of CSI and discuss some of the recent results that help to dimension the pilot and data resources specifically in cellular MU-MIMO systems
    corecore