1,236 research outputs found

    Motion Coordination of Multiple Autonomous Vehicles in a Spatiotemporal Flowfield

    Get PDF
    The long-term goal of this research is to provide theoretically justified control strategies to operate autonomous vehicles in spatiotemporal flowfields. The specific objective of this dissertation is to use estimation and nonlinear control techniques to generate decentralized control algorithms that enable motion coordination for multiple autonomous vehicles while operating in a time-varying flowfield. A cooperating team of vehicles can benefit from sharing data and tasking responsibilities. Many existing control algorithms promote collaboration of autonomous vehicles. However, these algorithms often fail to account for the degradation of control performance caused by flowfields. This dissertation presents decentralized multivehicle coordination algorithms designed for operation in a spatially or temporally varying flowfield. Each vehicle is represented using a Newtonian particle traveling in a plane at constant speed relative to the flow and subject to a steering control. Initially, we assume the flowfield is known and describe algorithms that stabilize a circular formation in a time-varying spatially nonuniform flow of moderate intensity. These algorithms are extended by relaxing the assumption that the flow is known: the vehicles dynamically estimate the flow and use that estimate in the control. We propose a distributed estimation and control algorithm comprising a consensus filter to share information gleaned from noisy position measurements, and an information filter to reconstruct a spatially varying flowfield. The theoretical results are illustrated with numerical simulations of circular formation control and validated in outdoor unmanned aerial vehicle (UAV) flight tests

    A Survey on Aerial Swarm Robotics

    Get PDF
    The use of aerial swarms to solve real-world problems has been increasing steadily, accompanied by falling prices and improving performance of communication, sensing, and processing hardware. The commoditization of hardware has reduced unit costs, thereby lowering the barriers to entry to the field of aerial swarm robotics. A key enabling technology for swarms is the family of algorithms that allow the individual members of the swarm to communicate and allocate tasks amongst themselves, plan their trajectories, and coordinate their flight in such a way that the overall objectives of the swarm are achieved efficiently. These algorithms, often organized in a hierarchical fashion, endow the swarm with autonomy at every level, and the role of a human operator can be reduced, in principle, to interactions at a higher level without direct intervention. This technology depends on the clever and innovative application of theoretical tools from control and estimation. This paper reviews the state of the art of these theoretical tools, specifically focusing on how they have been developed for, and applied to, aerial swarms. Aerial swarms differ from swarms of ground-based vehicles in two respects: they operate in a three-dimensional space and the dynamics of individual vehicles adds an extra layer of complexity. We review dynamic modeling and conditions for stability and controllability that are essential in order to achieve cooperative flight and distributed sensing. The main sections of this paper focus on major results covering trajectory generation, task allocation, adversarial control, distributed sensing, monitoring, and mapping. Wherever possible, we indicate how the physics and subsystem technologies of aerial robots are brought to bear on these individual areas

    Cooperative Robots to Observe Moving Targets: Review

    Get PDF

    Comprehensive review on controller for leader-follower robotic system

    Get PDF
    985-1007This paper presents a comprehensive review of the leader-follower robotics system. The aim of this paper is to find and elaborate on the current trends in the swarm robotic system, leader-follower, and multi-agent system. Another part of this review will focus on finding the trend of controller utilized by previous researchers in the leader-follower system. The controller that is commonly applied by the researchers is mostly adaptive and non-linear controllers. The paper also explores the subject of study or system used during the research which normally employs multi-robot, multi-agent, space flying, reconfigurable system, multi-legs system or unmanned system. Another aspect of this paper concentrates on the topology employed by the researchers when they conducted simulation or experimental studies

    Onboard Audio and Video Processing for Secure Detection, Localization, and Tracking in Counter-UAV Applications

    Get PDF
    Nowadays, UAVs are of fundamental importance in numerous civil applications like search and rescue and military applications like monitoring and patrolling or counter-UAV where the remote UAV nodes collect sensor data. In the last case, flying UAVs collect environmental data to be used to contrast external attacks launched by adversary drones. However, due to the limited computing resources on board of the acquisition UAVs, most of the signal processing is still performed on a ground central unit where the sensor data is sent wirelessly. This poses serious security problems from malicious entities such as cyber attacks that exploit vulnerabilities at the application level. One possibility to reduce the risk is to concentrate part of the computing onboard of the remote nodes. In this context, we propose a framework where detection of nearby drones and their localization and tracking can be performed in real-time on the small computing devices mounted on board of the drones. Background subtraction is applied to the video frames for pre-processing with the objective of an on-board UAV detection using machine-vision algorithms. For the localization and tracking of the detected UAV, multi-channel acoustic signals are instead considered and DOA estimations are obtained through the MUSIC algorithm. In this work, the proposed idea is described in detail along with some experiments and, then, methods of effective implementation are provided
    corecore