1,150 research outputs found

    Cellular Underwater Wireless Optical CDMA Network: Potentials and Challenges

    Get PDF
    Underwater wireless optical communications is an emerging solution to the expanding demand for broadband links in oceans and seas. In this paper, a cellular underwater wireless optical code division multiple-access (UW-OCDMA) network is proposed to provide broadband links for commercial and military applications. The optical orthogonal codes (OOC) are employed as signature codes of underwater mobile users. Fundamental key aspects of the network such as its backhaul architecture, its potential applications and its design challenges are presented. In particular, the proposed network is used as infrastructure of centralized, decentralized and relay-assisted underwater sensor networks for high-speed real-time monitoring. Furthermore, a promising underwater localization and positioning scheme based on this cellular network is presented. Finally, probable design challenges such as cell edge coverage, blockage avoidance, power control and increasing the network capacity are addressed.Comment: 11 pages, 10 figure

    Energy-Efficient Resource Allocation in Wireless Networks: An Overview of Game-Theoretic Approaches

    Full text link
    An overview of game-theoretic approaches to energy-efficient resource allocation in wireless networks is presented. Focusing on multiple-access networks, it is demonstrated that game theory can be used as an effective tool to study resource allocation in wireless networks with quality-of-service (QoS) constraints. A family of non-cooperative (distributed) games is presented in which each user seeks to choose a strategy that maximizes its own utility while satisfying its QoS requirements. The utility function considered here measures the number of reliable bits that are transmitted per joule of energy consumed and, hence, is particulary suitable for energy-constrained networks. The actions available to each user in trying to maximize its own utility are at least the choice of the transmit power and, depending on the situation, the user may also be able to choose its transmission rate, modulation, packet size, multiuser receiver, multi-antenna processing algorithm, or carrier allocation strategy. The best-response strategy and Nash equilibrium for each game is presented. Using this game-theoretic framework, the effects of power control, rate control, modulation, temporal and spatial signal processing, carrier allocation strategy and delay QoS constraints on energy efficiency and network capacity are quantified.Comment: To appear in the IEEE Signal Processing Magazine: Special Issue on Resource-Constrained Signal Processing, Communications and Networking, May 200

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table

    A multiple-choice knapsack based algorithm for CDMA downlink rate differentiation under uplink coverage restrictions

    Get PDF
    This paper presents an analytical model for downlink rate allocation in Code Division Multiple Access (CDMA) mobile networks. By discretizing the coverage area into small segments, the transmit power requirements are characterized via a matrix representation that separates user and system characteristics. We obtain a closed-form analytical expression for the so-called Perron-Frobenius eigenvalue of that matrix, which provides a quick assessment of the feasibility of the power assignment for a given downlink rate allocation. Based on the Perron-Frobenius eigenvalue, we reduce the downlink rate allocation problem to a set of multiple-choice knapsack problems. The solution of these problems provides an approximation of the optimal downlink rate allocation and cell borders for which the system throughput, expressed in terms of downlink rates, is maximized. \u

    Non-atomic Games for Multi-User Systems

    Get PDF
    In this contribution, the performance of a multi-user system is analyzed in the context of frequency selective fading channels. Using game theoretic tools, a useful framework is provided in order to determine the optimal power allocation when users know only their own channel (while perfect channel state information is assumed at the base station). We consider the realistic case of frequency selective channels for uplink CDMA. This scenario illustrates the case of decentralized schemes, where limited information on the network is available at the terminal. Various receivers are considered, namely the Matched filter, the MMSE filter and the optimum filter. The goal of this paper is to derive simple expressions for the non-cooperative Nash equilibrium as the number of mobiles becomes large and the spreading length increases. To that end two asymptotic methodologies are combined. The first is asymptotic random matrix theory which allows us to obtain explicit expressions of the impact of all other mobiles on any given tagged mobile. The second is the theory of non-atomic games which computes good approximations of the Nash equilibrium as the number of mobiles grows.Comment: 17 pages, 4 figures, submitted to IEEE JSAC Special Issue on ``Game Theory in Communication Systems'

    Flat Cellular (UMTS) Networks

    Get PDF
    Traditionally, cellular systems have been built in a hierarchical manner: many specialized cellular access network elements that collectively form a hierarchical cellular system. When 2G and later 3G systems were designed there was a good reason to make system hierarchical: from a cost-perspective it was better to concentrate traffic and to share the cost of processing equipment over a large set of users while keeping the base stations relatively cheap. However, we believe the economic reasons for designing cellular systems in a hierarchical manner have disappeared: in fact, hierarchical architectures hinder future efficient deployments. In this paper, we argue for completely flat cellular wireless systems, which need just one type of specialized network element to provide radio access network (RAN) functionality, supplemented by standard IP-based network elements to form a cellular network. While the reason for building a cellular system in a hierarchical fashion has disappeared, there are other good reasons to make the system architecture flat: (1) as wireless transmission techniques evolve into hybrid ARQ systems, there is less need for a hierarchical cellular system to support spatial diversity; (2) we foresee that future cellular networks are part of the Internet, while hierarchical systems typically use interfaces between network elements that are specific to cellular standards or proprietary. At best such systems use IP as a transport medium, not as a core component; (3) a flat cellular system can be self scaling while a hierarchical system has inherent scaling issues; (4) moving all access technologies to the edge of the network enables ease of converging access technologies into a common packet core; and (5) using an IP common core makes the cellular network part of the Internet

    GAME THEORETIC APPROACH TO RADIO RESOURCE MANAGEMENT ON THE REVERSE LINK FOR MULTI-RATE CDMA WIRELESS DATA NETWORKS

    Get PDF
    This work deals with efficient power and rate assignment to mobile stations (MSs) involved in bursty data transmission in cellular CDMA networks. Power control in the current CDMA standards is based on a fixed target signal quality called signal to interference ratio (SIR). The target SIR represents a predefined frame error rate (FER). This approach is inefficient for data-MSs because a fixed target SIR can limit the MS's throughput. Power control should thus provide dynamic target SIRs instead of a fixed target SIR. In the research literature, the power control problem has been modeled using game theory. A limitation of the current literature is that in order to implement the algorithms, each MS needs to know information such as path gains and transmission rates of all other MSs. Fast rate control schemes in the evolving cellular data systems such as cdma2000-1x-EV assign transmission rates to MSs using a probabilistic approach. The limitation here is that the radio resources can be either under or over-utilized. Further, all MSs are not assigned the same rates. In the schemes proposed in the literature, only few MSs, which have the best channel conditions, obtain all radio resources. In this dissertation, we address the power control issue by moving the computation of the Nash equilibrium from each MS to the base station (BS). We also propose equal radio resource allocation for all MSs under the constraint that only the maximum allowable radio resources are used in a cell. This dissertation addresses the problem of how to efficiently assign power and rate to MSs based on dynamic target SIRs for bursty transmissions. The proposed schemes in this work maximize the throughput of each data-MS while still providing equal allocation of radio resources to all MSs and achieving full radio resource utilization in each cell. The proposed schemes result in power and rate control algorithms that however require some assistance from the BS. The performance evaluation and comparisons with cdma2000-1x-Evolution Data Only (1x-EV-DO) show that the proposed schemes can provide better effective rates (rates after error) than the existing schemes
    corecore