1,738 research outputs found

    In-operation learning of optimal wind farm operation strategy

    Get PDF
    In a wind farm, power losses due to wind turbine wake effects can be up to 30-40% under certain conditions. As the global installed wind power capacity increases, the mitigation of wake effects in wind farms is gaining more importance. Following a conventional control strategy, each individual turbine maximizes its own power production without taking into consideration its effects on the performance of downstream turbines. Therefore, this control scheme results in operation conditions that yield suboptimal power production. In order to increase the overall wind farm power production, a cooperative control strategy can be used, which coordinates the control actions among the wind turbines in the wind farm. This work further investigates the model-free Bayesian Ascent optimization algorithm using SimWindFarm and a standalone Dynamic Wake Meandering model-based simulation tool An advantage of such optimization approach is that the control strategy adapts to operational conditions in the wind farm and is not model-dependent. An approximation of the wind farm power function is constructed using GP regression to fit the control action inputs and the noisy measured power outputs, which is then maximized to determine the optimal control inputs. This estimation is updated in every iteration, allowing the control system to learn from the target system while performing the optimization. The usage of all historical data, along with a trust region constraint in the sampling of new inputs, contribute to a fast convergence rate with gradual changes of the control actions. The developed learning technique is implemented in a wind farm controller and tested in both SimWindFarm and standalone Dynamic Wake Meandering model-based simulation tools. With the conducted tests, performance of the algorithm is assessed considering the different dynamics in the wind farm, thus obtaining an accurate representation of real farm operation. The developed controller reliably improves farm efficiency, even with uncertainty present in measurements. Compared to traditional control strategies, an increase in total wind farm power production is obtained when using a cooperative control strategy. Such enhancement in wind farm performance would result in an improvement of wind farm economics and hence in further growth of wind-energy based power generation

    Decentralized and Fault-Tolerant Control of Power Systems with High Levels of Renewables

    Get PDF
    Inter-area oscillations have been identified as a major problem faced by most power systems and stability of these oscillations are of vital concern due to the potential for equipment damage and resulting restrictions on available transmission capacity. In recent years, wide-area measurement systems (WAMSs) have been deployed that allow inter-area modes to be observed and identified.Power grids consist of interconnections of many subsystems which may interact with their neighbors and include several sensors and actuator arrays. Modern grids are spatially distributed and centralized strategies are computationally expensive and might be impractical in terms of hardware limitations such as communication speed. Hence, decentralized control strategies are more desirable.Recently, the use of HVDC links, FACTS devices and renewable sources for damping of inter-area oscillations have been discussed in the literature. However, very few such systems have been deployed in practice partly due to the high level of robustness and reliability requirements for any closed loop power system controls. For instance, weather dependent sources such as distributed winds have the ability to provide services only within a narrow range and might not always be available due to weather, maintenance or communication failures.Given this background, the motivation of this work is to ensure power grid resiliency and improve overall grid reliability. The first consideration is the design of optimal decentralized controllers where decisions are based on a subset of total information. The second consideration is to design controllers that incorporate actuator limitations to guarantee the stability and performance of the system. The third consideration is to build robust controllers to ensure resiliency to different actuator failures and availabilities. The fourth consideration is to design distributed, fault-tolerant and cooperative controllers to address above issues at the same time. Finally, stability problem of these controllers with intermittent information transmission is investigated.To validate the feasibility and demonstrate the design principles, a set of comprehensive case studies are conducted based on different power system models including 39-bus New England system and modified Western Electricity Coordinating Council (WECC) system with different operating points, renewable penetration and failures

    Wind farm control technologies : from classical control to reinforcement learning

    Get PDF
    Wind power plays a vital role in the global effort towards net zero. The recent figure shows that 93GW new wind capacity was installed worldwide in 2020, leading to a 53% year-on-year increase. Control system is the core in wind farm operations and has essential influences on the farm’s power capture efficiency, economic profitability, and operation & maintenance cost. However, wind farms’ inherent system complexities and the aerodynamic interactions among wind turbines bring significant barriers to control systems design. The wind industry has recognized that new technologies are needed to handle wind farm control tasks, especially for large-scale offshore wind farms. This paper provides a comprehensive review of the development and most recent advances of wind farm control technologies. This covers the introduction of fundamental aspects in wind farm control in terms of system modelling, main challenges, and control objectives. Existing wind farm control methods for different purposes, including layout optimization, power generation maximization, fatigue loads minimization, and power reference tracking, are investigated. Moreover, a detailed discussion regarding the differences and connections among model-based, model-free and data-driven wind farm approaches is presented. In addition, highlights are made on the state-of-the-art wind farm control technologies based on reinforcement learning - a booming machine learning technique that has drawn worldwide attention. Future challenges and research avenues in wind farm control are also analysed

    Optimal frequency regulation of multi-terminal HVDC-linked grids with deloaded offshore wind farms control

    Get PDF
    © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper proposes a new decentralized strategy for optimal grid frequency regulation (GFR) in an interconnected power system, where onshore grids and offshore wind farms (OWFs) are linked using a multi-terminal high-voltage direct-current (MTDC) system. In the proposed strategy, grid- and OWF-side optimal controllers are developed to coordinate the operations of synchronous generators and the MTDC converter, and the OWF and the MTDC converter, respectively, thus achieving optimal generator power and deloaded OWF power sharing of the interconnected grids and minimizing frequency deviations in each grid. Full-order dynamic models of an MTDC-linked grid and an OWF are implemented, and given each dynamic model, grid- and OWF-side decentralized linear quadratic Gaussian regulators are designed for optimal GFR of the MTDC-linked grids and supporting GFR through optimal deloading operation of the OWFs, respectively. Eigenvalue analyses are conducted with a focus on the effects of system parameter uncertainties and communication time delays. Comparative case studies are also performed to verify that the proposed strategy improves the effectiveness and stability of real-time GFR in MTDC-linked grids under various conditions.Postprint (author's final draft

    Power System Dynamic State Estimation: Motivations, Definitions, Methodologies, and Future Work

    Get PDF
    This paper summarizes the technical activities of the Task Force on Power System Dynamic State and Parameter Estimation. This Task Force was established by the IEEE Working Group on State Estimation Algorithms to investigate the added benefits of dynamic state and parameter estimation for the enhancement of the reliability, security, and resilience of electric power systems. The motivations and engineering values of dynamic state estimation (DSE) are discussed in detail. Then, a set of potential applications that will rely on DSE is presented and discussed. Furthermore, a unified framework is proposed to clarify the important concepts related to DSE, forecasting-aided state estimation, tracking state estimation, and static state estimation. An overview of the current progress in DSE and dynamic parameter estimation is provided. The paper also provides future research needs and directions for the power engineering community

    Activity Report: Automatic Control 2011

    Get PDF

    Model Predictive Control for Smart Energy Systems

    Get PDF

    Wide-area monitoring and control of future smart grids

    No full text
    Application of wide-area monitoring and control for future smart grids with substantial wind penetration and advanced network control options through FACTS and HVDC (both point-to-point and multi-terminal) is the subject matter of this thesis. For wide-area monitoring, a novel technique is proposed to characterize the system dynamic response in near real-time in terms of not only damping and frequency but also mode-shape, the latter being critical for corrective control action. Real-time simulation in Opal-RT is carried out to illustrate the effectiveness and practical feasibility of the proposed approach. Potential problem with wide-area closed-loop continuous control using FACTS devices due to continuously time-varying latency is addressed through the proposed modification of the traditional phasor POD concept introduced by ABB. Adverse impact of limited bandwidth availability due to networked communication is established and a solution using an observer at the PMU location has been demonstrated. Impact of wind penetration on the system dynamic performance has been analyzed along with effectiveness of damping control through proper coordination of wind farms and HVDC links. For multi-terminal HVDC (MTDC) grids the critical issue of autonomous power sharing among the converter stations following a contingency (e.g. converter outage) is addressed. Use of a power-voltage droop in the DC link voltage control loops using remote voltage feedback is shown to yield proper distribution of power mismatch according to the converter ratings while use of local voltages turns out to be unsatisfactory. A novel scheme for adapting the droop coefficients to share the burden according to the available headroom of each converter station is also studied. The effectiveness of the proposed approaches is illustrated through detailed frequency domain analysis and extensive time-domain simulation results on different test systems

    Data driven learning model predictive control of offshore wind farms

    Get PDF
    This paper presents a data-driven control approach for maximizing the total power generation of the offshore wind farm by using a recently developed learning model predictive control (LMPC) algorithm. The control is designed by coordinating yaw angle control actions of wind turbines to mitigate the wake interactions among the turbines for increasing the total farm power production, which is termed as wake redirection. This paper mainly focuses on designing the architecture and methodology of the LMPC for wind farm, including a unified wind turbine wake interaction model, the LMPC for minimizing an iteration cost function, the recursive feasibility, stability and convergence analysis. Extensive comparative studies are conducted to verify the performance of the LMPC in comparison with the existing model predictive control (MPC) method under the same wind speed conditions. The results show that the wind farm yields up to 15% more power production by using the LMPC than the conventional MPC
    • …
    corecore