2,346 research outputs found

    Parallel Branch-and-Bound in Multi-core Multi-CPU Multi-GPU Heterogeneous Environments

    Get PDF
    International audienceWe investigate the design of parallel B&B in large scale heterogeneous compute environments where processing units can be composed of a mixture of multiple shared memory cores, multiple distributed CPUs and multiple GPUs devices. We describe two approaches addressing the critical issue of how to map B&B workload with the different levels of parallelism exposed by the target compute platform. We also contribute a throughout large scale experimental study which allows us to derive a comprehensive and fair analysis of the proposed approaches under different system configurations using up to 16 GPUs and up to 512 CPU-cores. Our results shed more light on the main challenges one has to face when tackling B&B algorithms while describing efficient techniques to address them. In particular, we are able to obtain linear speed-ups at moderate scales where adaptive load balancing among the heterogeneous compute resources is shown to have a significant impact on performance. At the largest scales, intra-node parallelism and hybrid decentralized load balancing is shown to have a crucial importance in order to alleviate locking issues among shared memory threads and to scale the distributed resources while optimizing communication costs and minimizing idle time

    Adaptive Dynamic Load Balancing in Heterogenous Multiple GPUs-CPUs Distributed Setting: Case Study of B&B Tree Search

    Get PDF
    International audienceThe emergence of new hybrid and heterogenous multi-GPU multi-CPU large scale platforms offers new opportunities and pauses new challenges when solving difficult optimization problems. This paper targets irregular tree search algorithms in which workload is unpredictable. We propose an adaptive distributed approach allowing to distribute the load dynamically at runtime while taking into account the computing abilities of either GPUs or CPUs. Using Branch-and-Bound and Flowshop as a case study, we deployed our approach using up to 20 GPUs jointly to up to 128 CPUs. Through extensive experiments in different system configurations, we report near optimal speedups, thus providing new insights into how to take full advantage of both GPUs and CPUs power in modern computing platforms

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future
    corecore