7,515 research outputs found

    Distributed Primary Frequency Control through Multi-Terminal HVDC Transmission Systems

    Full text link
    This paper presents a decentralized controller for sharing primary AC frequency control reserves through a multi-terminal HVDC grid. By using Lyapunov arguments, the proposed controller is shown to stabilize the equilibrium of the closed-loop system consisting of the interconnected AC and HVDC grids, given any positive controller gains. The static control errors resulting from the proportional controller are quantified and bounded by analyzing the equilibrium of the closed-loop system. The proposed controller is applied to a test grid consisting of three asynchronous AC areas interconnected by an HVDC grid, and its effectiveness is validated through simulation

    A Sub-optimal Algorithm to Synthesize Control Laws for a Network of Dynamic Agents

    Get PDF
    We study the synthesis problem of an LQR controller when the matrix describing the control law is constrained to lie in a particular vector space. Our motivation is the use of such control laws to stabilize networks of autonomous agents in a decentralized fashion; with the information flow being dictated by the constraints of a pre-specified topology. In this paper, we consider the finite-horizon version of the problem and provide both a computationally intensive optimal solution and a sub-optimal solution that is computationally more tractable. Then we apply the technique to the decentralized vehicle formation control problem and show that the loss in performance due to the use of the sub-optimal solution is not huge; however the topology can have a large effect on performance

    Distributed Event-Triggered Control for Asymptotic Synchronization of Dynamical Networks

    Get PDF
    This paper studies synchronization of dynamical networks with event-based communication. Firstly, two estimators are introduced into each node, one to estimate its own state, and the other to estimate the average state of its neighbours. Then, with these two estimators, a distributed event-triggering rule (ETR) with a dwell time is designed such that the network achieves synchronization asymptotically with no Zeno behaviours. The designed ETR only depends on the information that each node can obtain, and thus can be implemented in a decentralized way.Comment: 8 pages, 2 figues, 1 tabl

    Distributed Output-Feedback LQG Control with Delayed Information Sharing

    Full text link
    This paper develops a controller synthesis method for distributed LQG control problems under output-feedback. We consider a system consisting of three interconnected linear subsystems with a delayed information sharing structure. While the state-feedback case has previously been solved, the extension to output-feedback is nontrivial as the classical separation principle fails. To find the optimal solution, the controller is decomposed into two independent components: a centralized LQG-optimal controller under delayed state observations, and a sum of correction terms based on additional local information available to decision makers. Explicit discrete-time equations are derived whose solutions are the gains of the optimal controller.Comment: 25 pages, 3 figure
    corecore