358 research outputs found

    Comprehensive review on controller for leader-follower robotic system

    Get PDF
    985-1007This paper presents a comprehensive review of the leader-follower robotics system. The aim of this paper is to find and elaborate on the current trends in the swarm robotic system, leader-follower, and multi-agent system. Another part of this review will focus on finding the trend of controller utilized by previous researchers in the leader-follower system. The controller that is commonly applied by the researchers is mostly adaptive and non-linear controllers. The paper also explores the subject of study or system used during the research which normally employs multi-robot, multi-agent, space flying, reconfigurable system, multi-legs system or unmanned system. Another aspect of this paper concentrates on the topology employed by the researchers when they conducted simulation or experimental studies

    Formation control of nonholonomic mobile robots using implicit polynomials and elliptic Fourier descriptors

    Get PDF
    This paper presents a novel method for the formation control of a group of nonholonomic mobile robots using implicit and parametric descriptions of the desired formation shape. The formation control strategy employs implicit polynomial (IP) representations to generate potential fields for achieving the desired formation and the elliptical Fourier descriptors (EFD) to maintain the formation once achieved. Coordination of the robots is modeled by linear springs between each robot and its two nearest neighbors. Advantages of this new method are increased flexibility in the formation shape, scalability to different swarm sizes and easy implementation. The shape formation control is first developed for point particle robots and then extended to nonholonomic mobile robots. Several simulations with robot groups of different sizes are presented to validate our proposed approach

    Coordinated multi-robot formation control

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 201

    Design and Development of an Integrated Mobile Robot System for Use in Simple Formations

    Get PDF
    In recent years, formation control of autonomous unmanned vehicles has become an active area of research with its many broad applications in areas such as transportation and surveillance. The work presented in this thesis involves the design and implementation of small unmanned ground vehicles to be used in leader-follower formations. This mechatronics project involves breadth in areas of mechanical, electrical, and computer engineering design. A vehicle with a unicycle-type drive mechanism is designed in 3D CAD software and manufactured using 3D printing capabilities. The vehicle is then modeled using the unicycle kinematic equations of motion and simulated in MATLAB/Simulink. Simple motion tasks are then performed onboard the vehicle utilizing the vehicle model via software, and leader-follower formations are implemented with multiple vehicles

    A novel coordination framework for multi-robot systems

    Get PDF
    Having made great progress tackling the basic problems concerning single-robot systems, many researchers shifted their focus towards the study of multi-robot systems (MRS). MRS were shortly found to be a perfect t for tasks considered to be hard, complex or even impossible for a single robot to perform, e.g. spatially separate tasks. One core research problem of MRS is robots' coordinated motion planning and control. Arti cial potential elds (APFs) and virtual spring-damper bonds are among the most commonly used models to attack the trajectory planning problem of MRS coordination. However, although mathematically sound, these approaches fail to guarantee inter-robot collision-free path generation. This is particularly the case when robots' dynamics, nonholonomic constraints and complex geometry are taken into account. In this thesis, a novel bio-inspired collision avoidance framework via virtual shells is proposed and augmented into the high-level trajectory planner. Safe trajectories can hence be generated for the low-level controllers to track. Motion control is handled by the design of hierarchical controllers which utilize virtual inputs. Several distinct coordinated task scenarios for 2D and 3D environments are presented as a proof of concept. Simulations are conducted with groups of three, four, ve and ten nonholonomic mobile robots as well as groups of three and ve quadrotor UAVs. The performance of the overall improved coordination structure is veri ed with very promising result

    Fuzzy Control Strategy for Cooperative Non-holonomic Motion of Cybercars with Passengers Vibration Analysis

    Get PDF
    The cybercars are electric road wheeled non-holonomic vehicles with fully automated driving capabilities. They contribute to sustainable mobility and are employed as passenger vehicles. Non-holonomic mechanics describes the motion of the cybercar constrained by non-integrable constraints, i.e. constraints on the system velocities that do not arise from constraints on the configuration alone. First of all there are thus with dynamic nonholonomic constraints, i.e. constraints preserved by the basic Euler-Lagrange equations (Bloch, 2000; Melluso, 2007; Raimondi & Melluso, 2006-a). Of course, these constraints are not externally imposed on the system but rather are consequences of the equations of motion of the cybercar, and so it sometimes convenient to treat them as conservation laws rather than constraints per se. On the other hand, kinematic non-holonomic constraints are those imposed by kinematics, such as rolling constraints. The goal of the motion control of cybercars is to allow the automated vehicle to go from one terminal to another while staying on a defined trajectory and maintaining a set of performance criteria in terms of speeds, accelerations and jerks. There are many results concerning the issue of kinematic motion control for single car (Fierro & Lewis, 1997). The main idea behind the kinematic control algorithms is to define the velocity control inputs which stabilize the closed loop system. These works are based only on the steering kinematics and assume that there exists perfect velocity tracking, i.e. the control signal instantaneously affects the car velocities and this is not true. Other control researchers have target the problems of time varying trajectories tracking, regulating a single car to a desired position/orientation and incorporating the effects of the dynamical model to enhance the overall performance of the closed loop system. The works above are based on a backstepping approach, where the merging of kinematic and dynamic effects leads to the control torques applied to the motors of the wheels. A Fuzzy dynamic closed loop motion control for a single non-holonomic car based on backstepping approach and oriented to stability analysis of the motion errors has been developed by Raimondi & Melluso (2005). In Raimondi & Melluso (2006-b) and Raimondi & Melluso (2007-a) adaptive fuzzy motion control systems for single non-holonomic automated vehicles with unknown dynamic and kinematic parameters and Kalman's filter to localize the car have been presented. With regards to the problems of cooperative control of multiple cybercars, a number of techniques have been developed for omni-directiona

    Planning And Control Of Swarm Motion As Continua

    Get PDF
    In this thesis, new algorithms for formation control of multi agent systems (MAS) based on continuum mechanics principles will be investigated. For this purpose agents of the MAS are treated as particles in a continuum, evolving in an n-D space, whose desired configuration is required to satisfy an admissible deformation function. Considered is a specific class of mappings that is called homogenous where the Jacobian of the mapping is only a function of time and is not spatially varying. The primary objectives of this thesis are to develop the necessary theory and its validation via simulation on a mobile-agent based swarm test bed that includes two primary tasks: 1) homogenous transformation of MAS and 2) deployment of a random distribution of agents on to a desired configuration. Developed will be a framework based on homogenous transformations for the evolution of a MAS in an n-D space (n=1, 2, and 3), under two scenarios: 1) no inter-agent communication (predefined motion plan); and 2) local inter-agent communication. Additionally, homogenous transformations based on communication protocols will be used to deploy an arbitrary distribution of a MAS on to a desired curve. Homogenous transformation with no communication: A homogenous transformation of a MAS, evolving in an space, under zero inter agent communication is first considered. Here the homogenous mapping, is characterized by an n x n Jacobian matrix ( ) and an n x 1 rigid body displacement vector ( ), that are based on positions of n+1 agents of the MAS, called leader agents. The designed Jacobian ( ) and rigid body displacement vector ( ) are passed onto rest of the agents of the MAS, called followers, who will then use that information to update their positions under a pre- iv defined motion plan. Consequently, the motion of MAS will evolve as a homogenous transformation of the initial configuration without explicit communication among agents. Homogenous Transformation under Local Communication: We develop a framework for homogenous transformation of MAS, evolving in , under a local inter agent communication topology. Here we assume that some agents are the leaders, that are transformed homogenously in an n-D space. In addition, every follower agent of the MAS communicates with some local agents to update its position, in order to grasp the homogenous mapping that is prescribed by the leader agents. We show that some distance ratios that are assigned based on initial formation, if preserved, lead to asymptotic convergence of the initial formation to a final formation under a homogenous mapping. Deployment of a Random Distribution on a Desired Manifold: Deployment of agents of a MAS, moving in a plane, on to a desired curve, is a task that is considered as an application of the proposed approach. In particular, a 2-D MAS evolution problem is considered as two 1-D MAS evolution problems, where x or y coordinates of the position of all agents are modeled as points confined to move on a straight line. Then, for every coordinate of MAS evolution, bulk motion is controlled by two agents considered leaders that move independently, with rest of the follower agents motions evolving through each follower agent communicating with two adjacent agents
    corecore