115 research outputs found

    Decentralized Dictionary Learning Over Time-Varying Digraphs

    Full text link
    This paper studies Dictionary Learning problems wherein the learning task is distributed over a multi-agent network, modeled as a time-varying directed graph. This formulation is relevant, for instance, in Big Data scenarios where massive amounts of data are collected/stored in different locations (e.g., sensors, clouds) and aggregating and/or processing all data in a fusion center might be inefficient or unfeasible, due to resource limitations, communication overheads or privacy issues. We develop a unified decentralized algorithmic framework for this class of nonconvex problems, which is proved to converge to stationary solutions at a sublinear rate. The new method hinges on Successive Convex Approximation techniques, coupled with a decentralized tracking mechanism aiming at locally estimating the gradient of the smooth part of the sum-utility. To the best of our knowledge, this is the first provably convergent decentralized algorithm for Dictionary Learning and, more generally, bi-convex problems over (time-varying) (di)graphs

    Distributed Nonconvex Multiagent Optimization Over Time-Varying Networks

    Full text link
    We study nonconvex distributed optimization in multiagent networks where the communications between nodes is modeled as a time-varying sequence of arbitrary digraphs. We introduce a novel broadcast-based distributed algorithmic framework for the (constrained) minimization of the sum of a smooth (possibly nonconvex and nonseparable) function, i.e., the agents' sum-utility, plus a convex (possibly nonsmooth and nonseparable) regularizer. The latter is usually employed to enforce some structure in the solution, typically sparsity. The proposed method hinges on Successive Convex Approximation (SCA) techniques coupled with i) a tracking mechanism instrumental to locally estimate the gradients of agents' cost functions; and ii) a novel broadcast protocol to disseminate information and distribute the computation among the agents. Asymptotic convergence to stationary solutions is established. A key feature of the proposed algorithm is that it neither requires the double-stochasticity of the consensus matrices (but only column stochasticity) nor the knowledge of the graph sequence to implement. To the best of our knowledge, the proposed framework is the first broadcast-based distributed algorithm for convex and nonconvex constrained optimization over arbitrary, time-varying digraphs. Numerical results show that our algorithm outperforms current schemes on both convex and nonconvex problems.Comment: Copyright 2001 SS&C. Published in the Proceedings of the 50th annual Asilomar conference on signals, systems, and computers, Nov. 6-9, 2016, CA, US

    FROST -- Fast row-stochastic optimization with uncoordinated step-sizes

    Full text link
    In this paper, we discuss distributed optimization over directed graphs, where doubly-stochastic weights cannot be constructed. Most of the existing algorithms overcome this issue by applying push-sum consensus, which utilizes column-stochastic weights. The formulation of column-stochastic weights requires each agent to know (at least) its out-degree, which may be impractical in e.g., broadcast-based communication protocols. In contrast, we describe FROST (Fast Row-stochastic-Optimization with uncoordinated STep-sizes), an optimization algorithm applicable to directed graphs that does not require the knowledge of out-degrees; the implementation of which is straightforward as each agent locally assigns weights to the incoming information and locally chooses a suitable step-size. We show that FROST converges linearly to the optimal solution for smooth and strongly-convex functions given that the largest step-size is positive and sufficiently small.Comment: Submitted for journal publication, currently under revie

    Decentralized Complete Dictionary Learning via â„“4\ell^{4}-Norm Maximization

    Full text link
    With the rapid development of information technologies, centralized data processing is subject to many limitations, such as computational overheads, communication delays, and data privacy leakage. Decentralized data processing over networked terminal nodes becomes an important technology in the era of big data. Dictionary learning is a powerful representation learning method to exploit the low-dimensional structure from the high-dimensional data. By exploiting the low-dimensional structure, the storage and the processing overhead of data can be effectively reduced. In this paper, we propose a novel decentralized complete dictionary learning algorithm, which is based on â„“4\ell^{4}-norm maximization. Compared with existing decentralized dictionary learning algorithms, comprehensive numerical experiments show that the novel algorithm has significant advantages in terms of per-iteration computational complexity, communication cost, and convergence rate in many scenarios. Moreover, a rigorous theoretical analysis shows that the dictionaries learned by the proposed algorithm can converge to the one learned by a centralized dictionary learning algorithm at a linear rate with high probability under certain conditions

    Distributed Online Optimization via Gradient Tracking with Adaptive Momentum

    Get PDF
    This paper deals with a network of computing agents aiming to solve an online optimization problem in a distributed fashion, i.e., by means of local computation and communication, without any central coordinator. We propose the gradient tracking with adaptive momentum estimation (GTAdam) distributed algorithm, which combines a gradient tracking mechanism with first and second order momentum estimates of the gradient. The algorithm is analyzed in the online setting for strongly convex and smooth cost functions. We prove that the average dynamic regret is bounded and that the convergence rate is linear. The algorithm is tested on a time-varying classification problem, on a (moving) target localization problem and in a stochastic optimization setup from image classification. In these numerical experiments from multi-agent learning, GTAdam outperforms state-of-the-art distributed optimization methods
    • …
    corecore