1,507 research outputs found

    A Decentralized Mobile Computing Network for Multi-Robot Systems Operations

    Full text link
    Collective animal behaviors are paradigmatic examples of fully decentralized operations involving complex collective computations such as collective turns in flocks of birds or collective harvesting by ants. These systems offer a unique source of inspiration for the development of fault-tolerant and self-healing multi-robot systems capable of operating in dynamic environments. Specifically, swarm robotics emerged and is significantly growing on these premises. However, to date, most swarm robotics systems reported in the literature involve basic computational tasks---averages and other algebraic operations. In this paper, we introduce a novel Collective computing framework based on the swarming paradigm, which exhibits the key innate features of swarms: robustness, scalability and flexibility. Unlike Edge computing, the proposed Collective computing framework is truly decentralized and does not require user intervention or additional servers to sustain its operations. This Collective computing framework is applied to the complex task of collective mapping, in which multiple robots aim at cooperatively map a large area. Our results confirm the effectiveness of the cooperative strategy, its robustness to the loss of multiple units, as well as its scalability. Furthermore, the topology of the interconnecting network is found to greatly influence the performance of the collective action.Comment: Accepted for Publication in Proc. 9th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conferenc

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Decentralized Visual-Inertial-UWB Fusion for Relative State Estimation of Aerial Swarm

    Full text link
    The collaboration of unmanned aerial vehicles (UAVs) has become a popular research topic for its practicability in multiple scenarios. The collaboration of multiple UAVs, which is also known as aerial swarm is a highly complex system, which still lacks a state-of-art decentralized relative state estimation method. In this paper, we present a novel fully decentralized visual-inertial-UWB fusion framework for relative state estimation and demonstrate the practicability by performing extensive aerial swarm flight experiments. The comparison result with ground truth data from the motion capture system shows the centimeter-level precision which outperforms all the Ultra-WideBand (UWB) and even vision based method. The system is not limited by the field of view (FoV) of the camera or Global Positioning System (GPS), meanwhile on account of its estimation consistency, we believe that the proposed relative state estimation framework has the potential to be prevalently adopted by aerial swarm applications in different scenarios in multiple scales.Comment: Accepted ICRA 202

    A Decentralized Control Framework for Energy-Optimal Goal Assignment and Trajectory Generation

    Full text link
    This paper proposes a decentralized approach for solving the problem of moving a swarm of agents into a desired formation. We propose a decentralized assignment algorithm which prescribes goals to each agent using only local information. The assignment results are then used to generate energy-optimal trajectories for each agent which have guaranteed collision avoidance through safety constraints. We present the conditions for optimality and discuss the robustness of the solution. The efficacy of the proposed approach is validated through a numerical case study to characterize the framework's performance on a set of dynamic goals.Comment: 6 pages, 3 figures, to appear at the 2019 Conference on Decision and Control, Nice, F

    Multiple UAV systems: a survey

    Get PDF
    Nowadays, Unmanned Aerial Vehicles (UAVs) are used in many different applications. Using systems of multiple UAVs is the next obvious step in the process of applying this technology for variety of tasks. There are few research works that cover the applications of these systems and they are all highly specialized. The goal of this survey is to fill this gap by providing a generic review on different applications of multiple UAV systems that have been developed in recent years. We also present a nomenclature and architecture taxonomy for these systems. In the end, a discussion on current trends and challenges is provided.This work was funded by the Ministry of Economy, Industryand Competitiveness of Spain under Grant Nos. TRA2016-77012-R and BES-2017-079798Peer ReviewedPostprint (published version

    A Review of Consensus-based Multi-agent UAV Implementations

    Get PDF
    In this paper, a survey on distributed control applications for multi Unmanned Aerial Vehicles (UAVs) systems is proposed.The focus is on consensus-based control, and both rotary-wing and fixed-wing UAVs are considered. On one side, the latest experimental configurations for the implementation of formation flight are analysed and compared for multirotor UAVs. On the other hand, the control frameworks taking into account the mobility of the fixed-wing UAVs performing target tracking are considered. This approach can be helpful to assess and compare the solutions for practical applications of consensus in UAV swarms

    Human Swarm Interaction: An Experimental Study of Two Types of Interaction with Foraging Swarms

    Get PDF
    In this paper we present the first study of human-swarm interaction comparing two fundamental types of interaction, coined intermittent and environmental. These types are exemplified by two control methods, selection and beacon control, made available to a human operator to control a foraging swarm of robots. Selection and beacon control differ with respect to their temporal and spatial influence on the swarm and enable an operator to generate different strategies from the basic behaviors of the swarm. Selection control requires an active selection of groups of robots while beacon control exerts an influence on nearby robots within a set range. Both control methods are implemented in a testbed in which operators solve an information foraging problem by utilizing a set of swarm behaviors. The robotic swarm has only local communication and sensing capabilities. The number of robots in the swarm range from 50 to 200. Operator performance for each control method is compared in a series of missions in different environments with no obstacles up to cluttered and structured obstacles. In addition, performance is compared to simple and advanced autonomous swarms. Thirty-two participants were recruited for participation in the study. Autonomous swarm algorithms were tested in repeated simulations. Our results showed that selection control scales better to larger swarms and generally outperforms beacon control. Operators utilized different swarm behaviors with different frequency across control methods, suggesting an adaptation to different strategies induced by choice of control method. Simple autonomous swarms outperformed human operators in open environments, but operators adapted better to complex environments with obstacles. Human controlled swarms fell short of task-specific benchmarks under all conditions. Our results reinforce the importance of understanding and choosing appropriate types of human-swarm interaction when designing swarm systems, in addition to choosing appropriate swarm behaviors

    A Survey on Aerial Swarm Robotics

    Get PDF
    The use of aerial swarms to solve real-world problems has been increasing steadily, accompanied by falling prices and improving performance of communication, sensing, and processing hardware. The commoditization of hardware has reduced unit costs, thereby lowering the barriers to entry to the field of aerial swarm robotics. A key enabling technology for swarms is the family of algorithms that allow the individual members of the swarm to communicate and allocate tasks amongst themselves, plan their trajectories, and coordinate their flight in such a way that the overall objectives of the swarm are achieved efficiently. These algorithms, often organized in a hierarchical fashion, endow the swarm with autonomy at every level, and the role of a human operator can be reduced, in principle, to interactions at a higher level without direct intervention. This technology depends on the clever and innovative application of theoretical tools from control and estimation. This paper reviews the state of the art of these theoretical tools, specifically focusing on how they have been developed for, and applied to, aerial swarms. Aerial swarms differ from swarms of ground-based vehicles in two respects: they operate in a three-dimensional space and the dynamics of individual vehicles adds an extra layer of complexity. We review dynamic modeling and conditions for stability and controllability that are essential in order to achieve cooperative flight and distributed sensing. The main sections of this paper focus on major results covering trajectory generation, task allocation, adversarial control, distributed sensing, monitoring, and mapping. Wherever possible, we indicate how the physics and subsystem technologies of aerial robots are brought to bear on these individual areas
    • …
    corecore