575 research outputs found

    Blockchain for secured IoT and D2D applications over 5G cellular networks : a thesis by publications presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer and Electronics Engineering, Massey University, Albany, New Zealand

    Get PDF
    Author's Declaration: "In accordance with Sensors, SpringerOpen, and IEEE’s copyright policy, this thesis contains the accepted and published version of each manuscript as the final version. Consequently, the content is identical to the published versions."The Internet of things (IoT) is in continuous development with ever-growing popularity. It brings significant benefits through enabling humans and the physical world to interact using various technologies from small sensors to cloud computing. IoT devices and networks are appealing targets of various cyber attacks and can be hampered by malicious intervening attackers if the IoT is not appropriately protected. However, IoT security and privacy remain a major challenge due to characteristics of the IoT, such as heterogeneity, scalability, nature of the data, and operation in open environments. Moreover, many existing cloud-based solutions for IoT security rely on central remote servers over vulnerable Internet connections. The decentralized and distributed nature of blockchain technology has attracted significant attention as a suitable solution to tackle the security and privacy concerns of the IoT and device-to-device (D2D) communication. This thesis explores the possible adoption of blockchain technology to address the security and privacy challenges of the IoT under the 5G cellular system. This thesis makes four novel contributions. First, a Multi-layer Blockchain Security (MBS) model is proposed to protect IoT networks while simplifying the implementation of blockchain technology. The concept of clustering is utilized to facilitate multi-layer architecture deployment and increase scalability. The K-unknown clusters are formed within the IoT network by applying a hybrid Evolutionary Computation Algorithm using Simulated Annealing (SA) and Genetic Algorithms (GA) to structure the overlay nodes. The open-source Hyperledger Fabric (HLF) Blockchain platform is deployed for the proposed model development. Base stations adopt a global blockchain approach to communicate with each other securely. The quantitative arguments demonstrate that the proposed clustering algorithm performs well when compared to the earlier reported methods. The proposed lightweight blockchain model is also better suited to balance network latency and throughput compared to a traditional global blockchain. Next, a model is proposed to integrate IoT systems and blockchain by implementing the permissioned blockchain Hyperledger Fabric. The security of the edge computing devices is provided by employing a local authentication process. A lightweight mutual authentication and authorization solution is proposed to ensure the security of tiny IoT devices within the ecosystem. In addition, the proposed model provides traceability for the data generated by the IoT devices. The performance of the proposed model is validated with practical implementation by measuring performance metrics such as transaction throughput and latency, resource consumption, and network use. The results indicate that the proposed platform with the HLF implementation is promising for the security of resource-constrained IoT devices and is scalable for deployment in various IoT scenarios. Despite the increasing development of blockchain platforms, there is still no comprehensive method for adopting blockchain technology on IoT systems due to the blockchain's limited capability to process substantial transaction requests from a massive number of IoT devices. The Fabric comprises various components such as smart contracts, peers, endorsers, validators, committers, and Orderers. A comprehensive empirical model is proposed that measures HLF's performance and identifies potential performance bottlenecks to better meet blockchain-based IoT applications' requirements. The implementation of HLF on distributed large-scale IoT systems is proposed. The performance of the HLF is evaluated in terms of throughput, latency, network sizes, scalability, and the number of peers serviceable by the platform. The experimental results demonstrate that the proposed framework can provide a detailed and real-time performance evaluation of blockchain systems for large-scale IoT applications. The diversity and the sheer increase in the number of connected IoT devices have brought significant concerns about storing and protecting the large IoT data volume. Dependencies of the centralized server solution impose significant trust issues and make it vulnerable to security risks. A layer-based distributed data storage design and implementation of a blockchain-enabled large-scale IoT system is proposed to mitigate these challenges by using the HLF platform for distributed ledger solutions. The need for a centralized server and third-party auditor is eliminated by leveraging HLF peers who perform transaction verification and records audits in a big data system with the help of blockchain technology. The HLF blockchain facilitates storing the lightweight verification tags on the blockchain ledger. In contrast, the actual metadata is stored in the off-chain big data system to reduce the communication overheads and enhance data integrity. Finally, experiments are conducted to evaluate the performance of the proposed scheme in terms of throughput, latency, communication, and computation costs. The results indicate the feasibility of the proposed solution to retrieve and store the provenance of large-scale IoT data within the big data ecosystem using the HLF blockchain

    A review of Smart Contract Blockchain Based on Multi-Criteria Analysis: Challenges and Motivations

    Full text link
    A smart contract is a digital program of transaction protocol (rules of contract) based on the consensus architecture of blockchain. Smart contracts with Blockchain are modern technologies that have gained enormous attention in scientific and practical applications. A smart contract is the central aspect of a blockchain that facilitates blockchain as a platform outside the cryptocurrency spectrum. The development of blockchain technology, with a focus on smart contracts, has advanced significantly in recent years. However research on the smart contract idea has weaknesses in the implementation sectors based on a decentralized network that shares an identical state. This paper extensively reviews smart contracts based on multi criteria analysis challenges and motivations. Therefore, implementing blockchain in multi-criteria research is required to increase the efficiency of interaction between users via supporting information exchange with high trust. Implementing blockchain in the multi-criteria analysis is necessary to increase the efficiency of interaction between users via supporting information exchange and with high confidence, detecting malfunctioning, helping users with performance issues, reaching a consensus, deploying distributed solutions and allocating plans, tasks and joint missions. The smart contract with decision-making performance, planning and execution improves the implementation based on efficiency, sustainability and management. Furthermore the uncertainty and supply chain performance lead to improved users confidence in offering new solutions in exchange for problems in smart contacts. Evaluation includes code analysis and performance while development performance can be under development.Comment: Revie

    Design Principles for Blockchain-based Applications in Green Bond Reporting

    Get PDF
    Emerging sustainable capital markets are crucial in reaching global climate goals. These markets’ credibility depends on the trustworthiness of data used to report the green impact of projects financed by sustainable financial instruments such as green bonds. To ensure credibility and thereby support these types of markets, the information systems field has the potential to create designs that leverage emerging technologies (in our case, blockchain) for green bond reporting. In this paper, we employ a design science research method to derive a set of design principles. These design principles discuss the most relevant blockchain concepts and reflect the characteristics of today’s green bond process. Through an artificial evaluation and demonstration of the design principles, we report on how to make informed design decisions to develop blockchain applications for green bond reporting. These findings are also significant for practitioners to develop new services or re-design current processes

    Characteristics of Blockchain and Smart Services, for Smart Governments: A systematic review of the literature

    Get PDF
    The interest in blockchain technology has grown rapidly, day by day. This is simply because of the security and decentralization that it provides. Nevertheless, most government services around the world run on inefficient systems loaded with heavy bureaucracy. They lead to non-transparent systems and a loss of public confidence in government services. The present systematic review of the literature on this topic aims to highlight the characteristics of blockchain technology that demonstrate its uniqueness, together with the characteristics of the smart government services that are required for efficient service delivery. It was found that the dominant characteristics of blockchain technology that are expected to provide the highest value for customers are decentralization and the capacity to be shared and public, whereas the most desired characteristics for the efficient service delivery of smart government services are speed, trust and participation. The paper went on to examine how the use of blockchain technology in government services is impacting on their delivery to customers by using examples from all around the world and to conduct a SWOT analysis of the use of blockchain in the government sector. Its findings are expected to help governments to develop a blockchain strategy that helps smart government services to adopt blockchain successfully

    Characteristics of Blockchain and Smart Services, for Smart Governments: A systematic review of the literature

    Get PDF
    The interest in blockchain technology has grown rapidly, day by day. This is simply because of the security and decentralization that it provides. Nevertheless, most government services around the world run on inefficient systems loaded with heavy bureaucracy. They lead to non-transparent systems and a loss of public confidence in government services. The present systematic review of the literature on this topic aims to highlight the characteristics of blockchain technology that demonstrate its uniqueness, together with the characteristics of the smart government services that are required for efficient service delivery. It was found that the dominant characteristics of blockchain technology that are expected to provide the highest value for customers are decentralization and the capacity to be shared and public, whereas the most desired characteristics for the efficient service delivery of smart government services are speed, trust and participation. The paper went on to examine how the use of blockchain technology in government services is impacting on their delivery to customers by using examples from all around the world and to conduct a SWOT analysis of the use of blockchain in the government sector. Its findings are expected to help governments to develop a blockchain strategy that helps smart government services to adopt blockchain successfully

    Blockchain Enabled Platforms for the Internet of Things

    Get PDF
    The Blockchain and the Internet of Things (IoT) have gained a lot of attention in the last few years, since both technologies enable the possibility of creating a more connected and independent world. This combination enables the design of computing systems and cyber-physical environments without the need of centralized trusted entities, giving users the freedom and control of their operations, in a decentralized ledger model. By using storing and logging mechanisms supported by the Blockchain, data is immutable and independently audited, guaranteeing that it is neither modified nor deleted. At the same time, applications can benefit from the reliability and fault-tolerance assumptions provided by the Blockchain in supporting transactions between users and involved devices. In this thesis, it was studied and proposed a generic solution for a Blockchain-enabled IoT software architecture. The proposed solution enables the advantages of using decentralized logging and ledgering, without the interference of central authorities, inherently supported by the base Blockchain reliability, availability and security foundations. These capabilities are envisaged as key-benefits for a new generation of clean-slate approaches for IoT applications with the required scalability criteria. The research conducted in the dissertation work, studied the base software foundations, relevant components and implementation options that enable the identified advantages of using Blockchain components and services, to leverage more scalable and trustable IoT platforms. Our proposed solution aims to provide an architecture that contributes to a more appropriate design for secure and reliable IoT systems. In this trend we propose a better use of edge-based support for local-enabled processing environments supporting IoT devices and users’ interactions, with operations intermediated by proximity hubs acting as gateways to the Blockchain, where the operations are regulated and controlled by verifiable smart-contracts involving data and transactions

    A Review of IoT Security and Privacy Using Decentralized Blockchain Techniques

    Get PDF
    IoT security is one of the prominent issues that has gained significant attention among the researchers in recent times. The recent advancements in IoT introduces various critical security issues and increases the risk of privacy leakage of IoT data. Implementation of Blockchain can be a potential solution for the security issues in IoT. This review deeply investigates the security threats and issues in IoT which deteriorates the effectiveness of IoT systems. This paper presents a perceptible description of the security threats, Blockchain based solutions, security characteristics and challenges introduced during the integration of Blockchain with IoT. An analysis of different consensus protocols, existing security techniques and evaluation parameters are discussed in brief. In addition, the paper also outlines the open issues and highlights possible research opportunities which can be beneficial for future research
    corecore