758 research outputs found

    A Survey and Analysis of Multi-Robot Coordination

    Get PDF
    International audienceIn the field of mobile robotics, the study of multi-robot systems (MRSs) has grown significantly in size and importance in recent years. Having made great progress in the development of the basic problems concerning single-robot control, many researchers shifted their focus to the study of multi-robot coordination. This paper presents a systematic survey and analysis of the existing literature on coordination, especially in multiple mobile robot systems (MMRSs). A series of related problems have been reviewed, which include a communication mechanism, a planning strategy and a decision-making structure. A brief conclusion and further research perspectives are given at the end of the paper

    Systems-compatible Incentives

    Get PDF
    Originally, the Internet was a technological playground, a collaborative endeavor among researchers who shared the common goal of achieving communication. Self-interest used not to be a concern, but the motivations of the Internet's participants have broadened. Today, the Internet consists of millions of commercial entities and nearly 2 billion users, who often have conflicting goals. For example, while Facebook gives users the illusion of access control, users do not have the ability to control how the personal data they upload is shared or sold by Facebook. Even in BitTorrent, where all users seemingly have the same motivation of downloading a file as quickly as possible, users can subvert the protocol to download more quickly without giving their fair share. These examples demonstrate that protocols that are merely technologically proficient are not enough. Successful networked systems must account for potentially competing interests. In this dissertation, I demonstrate how to build systems that give users incentives to follow the systems' protocols. To achieve incentive-compatible systems, I apply mechanisms from game theory and auction theory to protocol design. This approach has been considered in prior literature, but unfortunately has resulted in few real, deployed systems with incentives to cooperate. I identify the primary challenge in applying mechanism design and game theory to large-scale systems: the goals and assumptions of economic mechanisms often do not match those of networked systems. For example, while auction theory may assume a centralized clearing house, there is no analog in a decentralized system seeking to avoid single points of failure or centralized policies. Similarly, game theory often assumes that each player is able to observe everyone else's actions, or at the very least know how many other players there are, but maintaining perfect system-wide information is impossible in most systems. In other words, not all incentive mechanisms are systems-compatible. The main contribution of this dissertation is the design, implementation, and evaluation of various systems-compatible incentive mechanisms and their application to a wide range of deployable systems. These systems include BitTorrent, which is used to distribute a large file to a large number of downloaders, PeerWise, which leverages user cooperation to achieve lower latencies in Internet routing, and Hoodnets, a new system I present that allows users to share their cellular data access to obtain greater bandwidth on their mobile devices. Each of these systems represents a different point in the design space of systems-compatible incentives. Taken together, along with their implementations and evaluations, these systems demonstrate that systems-compatibility is crucial in achieving practical incentives in real systems. I present design principles outlining how to achieve systems-compatible incentives, which may serve an even broader range of systems than considered herein. I conclude this dissertation with what I consider to be the most important open problems in aligning the competing interests of the Internet's participants

    Spectrum Management: Property Rights, Markets, and The Commons

    Get PDF
    Gerald Faulhaber and David Farberconsider alternatives to the current licensing regime for spectrum, which appears to lead to substantial inefficiencies in spectrum allocation.Specifically, they examine two property rights regimes and a commons regime.Theynote that economists have favored a market-based regime while engineers have favored a commons-based regime to promote new technologies. Mr. Faulhaber and Mr. Farbershow that thereis aproperty rights market-based regime that unleashes the power of the market andthe power of the new technologies to efficiently allocate spectrum, and that is likely to meet our needs for the near-term future. This regime resolves the presumed dichotomy between the market-based and the commons-based views, so that both objectives can be realized.The authorsalso outline a transition processfor achieving the desired regime outcome that is a "win-win" for all stakeholders, and that could be politically feasible. The change to a property rights regime is likely to lower the cost of spectrum substantially, in many cases to zero.Mr. Faulhaber and Mr. Farberassert that a commons model and a market model can co-exist, at least until spectrum becomes truly scarce.

    Multi-UAV network control through dynamic task allocation: Ensuring data-rate and bit-error-rate support

    Get PDF
    A multi-UAV system relies on communications to operate. Failure to communicate remotely sensed mission data to the base may render the system ineffective, and the inability to exchange command and control messages can lead to system failures. This paper describes a unique method to control communications through distributed task allocation to engage under-utilized UAVs to serve as communication relays and to ensure that the network supports mission tasks. The distributed algorithm uses task assignment information, including task location and proposed execution time, to predict the network topology and plan support using relays. By explicitly coupling task assignment and relay creation processes the team is able to optimize the use of agents to address the needs of dynamic complex missions. The framework is designed to consider realistic network communication dynamics including path loss, stochastic fading, and information routing. The planning strategy is shown to ensure that agents support both datarate and interconnectivity bit-error-rate requirements during task execution. System performance is characterized through experiments both in simulation and in outdoor flight testing with a team of three UAVs.Aurora Flight Sciences Corp. (Fellowship Program

    Ensuring Network Connectivity for Decentralized Planning in Dynamic Environments

    Get PDF
    This work addresses the issue of network connectivity for a team of heterogeneous agents operating in a dynamic environment. The Consensus-Based Bundle Algorithm (CBBA), a distributed task allocation framework previously developed by the authors and their colleagues, is introduced as a methodology for complex mission planning, and extensions are proposed to address limited communication environments. In particular, CBBA with Relays leverages information available through already existing consensus phases to predict the network topology at select times and creates relay tasks to strengthen the connectivity of the network. By employing underutilized resources, the presented approach improves network connectivity without limiting the scope of the active agents, thus improving mission performance.United States. Air Force Office of Scientific Research (Grant FA9550-08-1-0086)United States. Air Force Office of Scientific Research. Multidisciplinary University Research Initiative (FA9550-08-1-0356

    Integration of Blockchain and Auction Models: A Survey, Some Applications, and Challenges

    Get PDF
    In recent years, blockchain has gained widespread attention as an emerging technology for decentralization, transparency, and immutability in advancing online activities over public networks. As an essential market process, auctions have been well studied and applied in many business fields due to their efficiency and contributions to fair trade. Complementary features between blockchain and auction models trigger a great potential for research and innovation. On the one hand, the decentralized nature of blockchain can provide a trustworthy, secure, and cost-effective mechanism to manage the auction process; on the other hand, auction models can be utilized to design incentive and consensus protocols in blockchain architectures. These opportunities have attracted enormous research and innovation activities in both academia and industry; however, there is a lack of an in-depth review of existing solutions and achievements. In this paper, we conduct a comprehensive state-of-the-art survey of these two research topics. We review the existing solutions for integrating blockchain and auction models, with some application-oriented taxonomies generated. Additionally, we highlight some open research challenges and future directions towards integrated blockchain-auction models
    corecore