930 research outputs found

    Decentralised State Feedback Tracking Control for Large-Scale Interconnected Systems Using Sliding Mode Techniques

    Get PDF
    A class of large-scale interconnected systems with matched and unmatched uncertainties is studied in this thesis, with the objective of proposing a controller based on diffeomorphisms and some techniques to deal with the tracking problem of the system. The main research developed in this thesis includes: 1. Large-scale interconnected system is a complex system consisting of several semi-independent subsystems, which are typically located in distinct geographic or logical locations. In this situation, decentralised control which only collects the local information is the practical method to deal with large-scale interconnected systems. The decentralised methodology is utilised throughout this thesis, guaranteeing that systems exhibit essential robustness against uncertainty. 2. Sliding mode technique is involved in the process of controller design. By introducing a nonsingular local diffeomorphism, the large-scale system can be transformed into a system with a specific regular form, where the matched uncertainty is completely absent from the subspace spanned by the sliding mode dynamics. The sliding mode based controller is proposed in this thesis to successfully achieve high robustness of the closed-loop interconnected systems with some particular uncertainties. 3. The considered large-scale interconnected systems can always track the smooth desired signals in a finite time. Each subsystem can track its own ideal signal or all subsystems can track the same ideal signal. Both situations are discussed in this thesis and the results are mathematically proven by introducing the Lyapunov theory, even when operating under the presence of disturbances. At the end of each chapter, some simulation examples, like a coupled inverted pendulums system, a river pollution system and a high-speed train system, are presented to verify the correctness of the proposed theory. At the conclusion of this thesis, a brief summary of the research findings has been provided, along with a mention of potential future research directions in tracking control of large-scale systems, like more general boundedness of interconnections, possibilities of distributed control, collaboration with intelligent control and so on. Some mathematical theories involved and simulation code are included in the appendix section

    Control of unstable systems using a 7 DoF robotic manipulator

    Get PDF
    Robotic manipulators are widely used in industrial applications, and their rigidity and flexibility are very important factors during their deployment. However, their usage is not limited to repetitive point-to-point tasks and can be used for more real-time control of various processes. This paper uses a 7-degrees-of-freedom manipulator to control an unstable system (Ball and Plate) as a proof of concept. The Ball and Plate system is widely used for testing algorithms designed for unstable systems, and many recent works have dealt with robotic manipulators as a control motion system. Robots are not usually used to control unstable systems, but bipedal robots are an exception. This paper aims to design a controller capable of stabilizing an unstable system with solid robustness while keeping actuator action values as low as possible because these robots will be indented to work for a prolonged time. An algorithm for an LQ polynomial controller is described and designed, and the whole setup is tested for ball stabilization in the center. The results show that the designed controller stabilizes the ball even with large external and internal disturbances while keeping the controller effort as low as possible

    Dual Design PID Controller for Robotic Manipulator Application

    Get PDF
    This research introduces a dual design proportionalā€“integralā€“derivative (PID) controller architecture process that aims to improve system performance by reducing overshoot and conserving electrical energy. The dual design PID controller uses real-time error and one-time step delay to adjust the confidence weights of the controller, leading to improved performance in reducing overshoot and saving electrical energy. To evaluate the effectiveness of the dual design PID controller, experiments were conducted to compare it with the PID controller using least overshoot tuning by Chienā€“Hronesā€“Reswick (CHR)Ā  technique. The results showed that the dual design PID controller was more effective at reducing overshoot and saving electrical energy. A case study was also conducted as part of this research, and it demonstrated that the system performed better when using the dual design PID controller. Overshoot and electrical energy consumption are common issues in systems that can impact performance, and the dual design PID controller architecture process provides a solution to these issues by reducing overshoot and saving electrical energy. The dual design PID controller offers a new technique for addressing these issues and improving system performance. In summary, this research presents a new technique for addressing overshoot and electrical energy consumption in systems through the use of a dual design PID controller. The dual design PID controller architecture process was found to be an effective solution for reducing overshoot and saving electrical energy in systems, as demonstrated by the experiments and case study conducted as part of this research. The dual design PID controller presents a promising solution for improving system performance by addressing the issues of overshoot and electrical energy consumption

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This ļ¬fth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different ļ¬elds of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modiļ¬ed Proportional Conļ¬‚ict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classiļ¬ers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identiļ¬cation of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classiļ¬cation. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classiļ¬cation, and hybrid techniques mixing deep learning with belief functions as well

    Synthesis of Hybrid Fuzzy Logic Law for Stable Control of Magnetic Levitation System

    Get PDF
    In this paper, we present a method to design a hybrid fuzzy logic controller (FLC) for a magnetic levitation system (MLS) based on the linear feedforward control method combined with FLC. MLS has many applications in industry, transportation, but the system is strongly nonlinear and unstable at equilibrium. The fast response linear control law ensures that the ball is kept at the desired point, but does not remain stable at that point in the presence of noise or deviation from the desired position. The controller that combines linear feedforward control and FLC is designed to ensure ball stability and increase the system's fast-response when deviating from equilibrium and improve control quality. Simulation results in the presence of noise show that the proposed control law has a fast and stable effect on external noise. The advantages of the proposed controller are shown through the comparison results with conventional PID and FLC control laws

    Decentralised sliding mode control for nonlinear interconnected systems with uncertainties

    Get PDF
    With the advances in science and technology, nonlinear large-scale interconnected systems have widely appeared in the real life. Traditional centralised control methods have inevitable disadvantages when they are used to deal with complex nonlinear interconnected systems with uncertainties. In connection with this, people desire to develop the novel control strategy which can be applied to complex interconnected systems. Therefore, decentralised sliding mode control (SMC) for interconnected systems has attracted great attention in related fields due to its advantages, for instance, simple structure, low cost of calculation, fast response, reduced-order sliding mode dynamics and insensitivity to matched variation of parameters and disturbances in systems. This thesis focuses on the development of decentralised SMC for nonlinear interconnected systems with uncertainties under certain assumptions. Several methods and different techniques have been considered in design of the controller to improve the robustness. The main contributions of this thesis include: ā€¢ The state feedback decentralised SMC is developed for nonlinear interconnected systems with matched uncertainty and mismatched unknown interconnections. A state feedback decentralised SMC strategy, under the assumption that all system states are accessible, is proposed to attenuate the impact of the uncertainties by using bounds on uncertainties and interconnections. The bounds used in the design are fully nonlinear which provide higher applicability for different complex interconnected systems. Especially, for this fully nonlinear system, the proposed method does not need to use the technique of linearisation, which is widely used in existing work to deal with nonlinear interconnected systems with uncertainties. ā€¢ The dynamic observer is applied to complex nonlinear interconnected systems with matched and mismatched uncertainties. This dynamic observer can estimate the system states which can not be achieved during the controller design. The proposed method has great identification ability with small estimated errors for the states of nonlinear interconnected systems with matched and mismatched uncertainties. It should be pointed out that the considered uncertainties of nonlinear interconnected systems have general forms, which means that the proposed method can be effectively used in more generalised nonlinear interconnected systems. ā€¢ A variable structure observer-based decentralised SMC is proposed to control a class of nonlinear interconnected systems with matched and mismatched uncertainties. Based on the designed dynamic observer, a dynamic decentralised output feedback SMC using outputs and estimated states is presented to control the interconnected systems with matched and mismatched uncertainties. The nonlinear interconnections are employed in the control design to reduce the conservatism of the developed results. The bounds of the uncertainties are relaxed which are nonlinear and take more general forms. Moreover, the limitation for the interconnected system is reduced when compared with the existing results in which the proposed strategies adopt the full-order observer. Besides that, the presented method improves the robustness of nonlinear interconnected systems to be against the effects of uncertainties. This thesis also provides several numerical and practical simulations to demonstrate the effectiveness of the proposed decentralised SMC for nonlinear interconnected systems with matched uncertainty, mismatched uncertainty and nonlinear interconnections

    Discrete Robust Control of Robot Manipulators using an Uncertainty and Disturbance Estimator

    Full text link
    This article presents the design of a robust observer based on the discrete-time formulation of Uncertainty and Disturbance Estimator (UDE), a well-known robust control technique, for the purpose of controlling robot manipulators. The design results in a complete closed-loop, robust, controller--observer structure. The observer incorporates the estimate of the overall uncertainty associated with the plant, in order to mimic its dynamics, and the control law is generated using an auxiliary error instead of state tracking error. A detailed qualitative and quantitative stability analysis is provided, and simulations are performed on the two-link robot manipulator system. Further, a comparative study with well-known control strategies for robot manipulators is presented. The results demonstrate the efficacy of the proposed technique, with better tracking performance and lower control energy compared to other strategies.Comment: 20 pages, 7 figures, 1 tabl

    Improving Automated Operations of Heavy-Duty Manipulators with Modular Model-Based Control Design

    Get PDF
    The rapid development of robotization and automation in mobile working machines aims to increase productivity and safety in many industrial sectors. In heavy-duty applications, hydraulically actuated manipulators are the common solution due to their large power-to-weight ratio. As hydraulic systems can exhibit nonlinear dynamic behavior, automated operations with closed-loop control become challenging. In industrial applications, the dexterity of operations for manipulators is ensured by providing interfaces to equip product variants with diļ¬€erent tool attachments. By considering these domain-speciļ¬c tool attachments for heavy-duty hydraulic manipulators (HHMs), the autonomous robotic operating development for all product variants might be a time-consuming process. This thesis aims to develop a modular nonlinear model-based (NMB) control method for HHMs to enable systematic NMB model reuse and control system modularity across diļ¬€erent HHM product variants with actuators and tool attachments. Equally importantly, the properties of NMB control are used to improve the high-performance control for multi degrees-of-freedom robotic HHMs, as rigorously stability-guaranteed control systems have been shown to provide superior performance. To achieve these objectives, four research problems (RPs) on HHM controls are addressed. The RPs are focused on damping control methods in underactuated tool attachments, compensating for static actuator nonlinearities, and, equally signiļ¬cantly, improving overall control performance. The fourth RP is introduced for hydraulic series elastic actuators (HSEAs) in HHM applications, which can be regarded as supplementing NMB control with the aim of improving force controllability. Six publications are presented to investigate the RPs in this thesis. The control development focus was on modular NMB control design for HHMs equipped with diļ¬€erent actuators and tool attachments consisting of passive and actuated joints. The designed control methods were demonstrated on a full-size HHM and a novel HSEA concept in a heavy-duty experimental setup. The results veriļ¬ed that modular control design for HHM systems can be used to decrease the modiļ¬cations required to use the manipulator with diļ¬€erent tool attachments and ļ¬‚oating-base environments

    Engineering for a changing world: 60th Ilmenau Scientific Colloquium, Technische UniversitƤt Ilmenau, September 04-08, 2023 : programme

    Get PDF
    In 2023, the Ilmenau Scientific Colloquium is once more organised by the Department of Mechanical Engineering. The title of this yearā€™s conference ā€œEngineering for a Changing Worldā€ refers to limited natural resources of our planet, to massive changes in cooperation between continents, countries, institutions and people ā€“ enabled by the increased implementation of information technology as the probably most dominant driver in many fields. The Colloquium, supplemented by workshops, is characterised but not limited to the following topics: ā€“ Precision engineering and measurement technology Nanofabrication ā€“ Industry 4.0 and digitalisation in mechanical engineering ā€“ Mechatronics, biomechatronics and mechanism technology ā€“ Systems engineering ā€“ Productive teaming - Human-machine collaboration in the production environment The topics are oriented on key strategic aspects of research and teaching in Mechanical Engineering at our university

    Optimal allocation of solar and wind distributed generation using particle swarm optimization technique

    Get PDF
    Power demand in the current days is increasing more and more where the conventional power generation systems are failing to meet these power demands due to less availability of non-renewable resources. Hence, many of the researchers are working on the distributed generation (DG) by using renewable resources like wind and solar. The penetration towards wind, solar DG faced challenging situations during power generation due to uncertainty in the wind speed and solar radiation. Recent studies have predicted that the combination of both solar and wind can lead to better performance. However, the sizing and placement of DG systems is necessary to achieve efficiency otherwise the systems may lead to adverse effects in distribution networks. This paper introduced the solar DG, wind DG and hybrid (solar and wind) DG system. The particle swarm optimization technique is used to size and place the DG because of its parallel search capability. Also, the combination of wind-solar DG gives better DG sizing in the respective DG location. The voltage profile of these DG systems has shown better results for the efficient power system. In comparison to conventional DG systems, the suggested hybrid DG system is capable of minimizing power loss and maintaining voltage profile
    • ā€¦
    corecore