4,640 research outputs found

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Machine diagnosis based on artificial immune systems

    Get PDF
    Nowadays, many of the manufactory and industrial system has a diagnosis system on top of it, responsible for ensuring the lifetime of the system itself. It achieves this by performing both diagnosis and error recovery procedures in real production time, on each of the individual parts of the system. There are many paradigms currently being used for diagnosis. However, they still fail to answer all the requirements imposed by the enterprises making it necessary for a different approach to take place. This happens mostly on the error recovery paradigms since the great diversity that is nowadays present in the industrial environment makes it highly unlikely for every single error to be fixed under a real time, no production stop, perspective. This work proposes a still relatively unknown paradigm to manufactory. The Artificial Immune Systems (AIS), which relies on bio-inspired algorithms, comes as a valid alternative to the ones currently being used. The proposed work is a multi-agent architecture that establishes the Artificial Immune Systems, based on bio-inspired algorithms. The main goal of this architecture is to solve for a resolution to the error currently detected by the system. The proposed architecture was tested using two different simulation environment, each meant to prove different points of views, using different tests. These tests will determine if, as the research suggests, this paradigm is a promising alternative for the industrial environment. It will also define what should be done to improve the current architecture and if it should be applied in a decentralised system

    Towards decentralised job shop scheduling as a web service

    Get PDF
    This paper aims to investigate the fundamental requirements for a cloud-based scheduling service for manufacturing, notably manufacturer priority to scheduling service, resolution of schedule conflict, and error-proof data entry. A flow chart of an inference-based system for manufacturing scheduling is proposed and a prototype was designed using semantic web technologies. An adapted version of the Muth and Thompson 10 × 10 scheduling problem (MT10) was used as a case study and two manufacturing companies represented our use cases. Using Microsoft Project, levelled manufacturer operation plans were generated. Semantic rules were proposed for constraints calculation, scheduling and verification. Pellet semantic reasoner was used to apply those rules onto the case study. The results include two main findings. First, our system effectively detected conflicts when subjected to four types of disturbances. Secondly, suggestions of conflict resolutions were effective when implemented albeit they were not efficient. Consequently, our two hypotheses were accepted which gave merit for future works intended to develop scheduling as a web service. Future works will include three phases: (1) migration of our system to a graph database server, (2) a multi-agent system to automate conflict resolution and data entry, and (3) an optimisation mechanism for manufacturer prioritisation to scheduling services

    Microservice Transition and its Granularity Problem: A Systematic Mapping Study

    Get PDF
    Microservices have gained wide recognition and acceptance in software industries as an emerging architectural style for autonomic, scalable, and more reliable computing. The transition to microservices has been highly motivated by the need for better alignment of technical design decisions with improving value potentials of architectures. Despite microservices' popularity, research still lacks disciplined understanding of transition and consensus on the principles and activities underlying "micro-ing" architectures. In this paper, we report on a systematic mapping study that consolidates various views, approaches and activities that commonly assist in the transition to microservices. The study aims to provide a better understanding of the transition; it also contributes a working definition of the transition and technical activities underlying it. We term the transition and technical activities leading to microservice architectures as microservitization. We then shed light on a fundamental problem of microservitization: microservice granularity and reasoning about its adaptation as first-class entities. This study reviews state-of-the-art and -practice related to reasoning about microservice granularity; it reviews modelling approaches, aspects considered, guidelines and processes used to reason about microservice granularity. This study identifies opportunities for future research and development related to reasoning about microservice granularity.Comment: 36 pages including references, 6 figures, and 3 table

    Scheduling in the industry 4.0: a systematic literature review

    Get PDF
    Industry 4.0 is characterised for being a new way of organising the supply chains, coordinating smart factories that should be capable of a higher adaptivity, making them more responsive to a continuously changing demand. This paper presents a Systematic Literature Review (SLR) with three main objectives. First, to identify in the literature on Industry 4.0, the need for new job scheduling methods for the factories of the digital era. Second, to identify in the literature of scheduling, which of these issues have been accomplished and what are the most critical gaps. Third, to propose a new research agenda on scheduling methodology, that fulfils the needs of scheduling in the field of Industry 4.0. The results show that literature related to the subject of study is rapidly growing and the needs of new methods for job scheduling in the digital factories concern two main ideas. First, the need to create and implement a digital architecture where data can be appropriately processed and second, the need of giving a decentralised machine scheduling solution inside such a framework. Although we can find some studies on small production lines, research with practical results remains scarce in the literature to date

    Securing future decentralised industrial IoT infrastructures: challenges and free open source solutions

    Get PDF
    peer-reviewedThe next industrial revolution is said to be paved by the use of novel Internet of Things (IoT) technology. One important aspect of the modern IoT infrastructures is decentralised communication, often called Peer-to-Peer (P2P). In the context of industrial communication, P2P contributes to resilience and improved stability for industrial components. Current industrial facilities, however, still rely on centralised networking schemes which are considered to be mandatory to comply with security standards. In order to succeed, introduced industrial P2P technology must maintain the current level of protection and also consider possible new threats. The presented work starts with a short analysis of well-established industrial communication infrastructures and how these could benefit from decentralised structures. Subsequently, previously undefined Information Technology (IT) security requirements are derived from the new cloud based decentralised industrial automation model architecture presented in this paper. To meet those requirements, state-of-the-art communication schemes and their open source implementations are presented and assessed for their usability in the context of industrial IoT. Finally, derived building blocks for industrial IoT P2P security are presented which are qualified to comply with the stated industrial IoT security requirements

    New Waves of IoT Technologies Research – Transcending Intelligence and Senses at the Edge to Create Multi Experience Environments

    Get PDF
    The next wave of Internet of Things (IoT) and Industrial Internet of Things (IIoT) brings new technological developments that incorporate radical advances in Artificial Intelligence (AI), edge computing processing, new sensing capabilities, more security protection and autonomous functions accelerating progress towards the ability for IoT systems to self-develop, self-maintain and self-optimise. The emergence of hyper autonomous IoT applications with enhanced sensing, distributed intelligence, edge processing and connectivity, combined with human augmentation, has the potential to power the transformation and optimisation of industrial sectors and to change the innovation landscape. This chapter is reviewing the most recent advances in the next wave of the IoT by looking not only at the technology enabling the IoT but also at the platforms and smart data aspects that will bring intelligence, sustainability, dependability, autonomy, and will support human-centric solutions.acceptedVersio
    corecore