373 research outputs found

    Decentralised cooperative localisation for heterogeneous teams of mobile robots

    Full text link

    A distributed framework for the control and cooperation of heterogeneous mobile robots in smart factories.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Durban.The present consumer market is driven by the mass customisation of products. Manufacturers are now challenged with the problem of not being able to capture market share and gain higher profits by producing large volumes of the same product to a mass market. Some businesses have implemented mass customisation manufacturing (MCM) techniques as a solution to this problem, where customised products are produced rapidly while keeping the costs at a mass production level. In addition to this, the arrival of the fourth industrial revolution (Industry 4.0) enables the possibility of establishing the decentralised intelligence of embedded devices to detect and respond to real-time variations in the MCM factory. One of the key pillars in the Industry 4.0, smart factory concept is Advanced Robotics. This includes cooperation and control within multiple heterogeneous robot networks, which increases flexibility in the smart factory and enables the ability to rapidly reconfigure systems to adapt to variations in consumer product demand. Another benefit in these systems is the reduction of production bottleneck conditions where robot services must be coordinated efficiently so that high levels of productivity are maintained. This study focuses on the research, design and development of a distributed framework that would aid researchers in implementing algorithms for controlling the task goals of heterogeneous mobile robots, to achieve robot cooperation and reduce bottlenecks in a production environment. The framework can be used as a toolkit by the end-user for developing advanced algorithms that can be simulated before being deployed in an actual system, thereby fast prototyping the system integration process. Keywords: Cooperation, heterogeneity, multiple mobile robots, Industry 4.0, smart factory, manufacturing, middleware, ROS, OPC, framework

    Communication Efficiency in Information Gathering through Dynamic Information Flow

    Get PDF
    This thesis addresses the problem of how to improve the performance of multi-robot information gathering tasks by actively controlling the rate of communication between robots. Examples of such tasks include cooperative tracking and cooperative environmental monitoring. Communication is essential in such systems for both decentralised data fusion and decision making, but wireless networks impose capacity constraints that are frequently overlooked. While existing research has focussed on improving available communication throughput, the aim in this thesis is to develop algorithms that make more efficient use of the available communication capacity. Since information may be shared at various levels of abstraction, another challenge is the decision of where information should be processed based on limits of the computational resources available. Therefore, the flow of information needs to be controlled based on the trade-off between communication limits, computation limits and information value. In this thesis, we approach the trade-off by introducing the dynamic information flow (DIF) problem. We suggest variants of DIF that either consider data fusion communication independently or both data fusion and decision making communication simultaneously. For the data fusion case, we propose efficient decentralised solutions that dynamically adjust the flow of information. For the decision making case, we present an algorithm for communication efficiency based on local LQ approximations of information gathering problems. The algorithm is then integrated with our solution for the data fusion case to produce a complete communication efficiency solution for information gathering. We analyse our suggested algorithms and present important performance guarantees. The algorithms are validated in a custom-designed decentralised simulation framework and through field-robotic experimental demonstrations

    Towards Collaborative Simultaneous Localization and Mapping: a Survey of the Current Research Landscape

    Get PDF
    Motivated by the tremendous progress we witnessed in recent years, this paper presents a survey of the scientific literature on the topic of Collaborative Simultaneous Localization and Mapping (C-SLAM), also known as multi-robot SLAM. With fleets of self-driving cars on the horizon and the rise of multi-robot systems in industrial applications, we believe that Collaborative SLAM will soon become a cornerstone of future robotic applications. In this survey, we introduce the basic concepts of C-SLAM and present a thorough literature review. We also outline the major challenges and limitations of C-SLAM in terms of robustness, communication, and resource management. We conclude by exploring the area's current trends and promising research avenues.Comment: 44 pages, 3 figure

    Full State History Cooperative Localisation with Complete Information Sharing

    Get PDF
    This thesis presents a decentralised localisation method for multiple robots. We enable reduced bandwidth requirements whilst using local solutions that fuse information from other robots. This method does not specify a communication topology or require complex tracking of information. The methods for including shared data match standard elements of nonlinear optimisation algorithms. There are four contributions in this thesis. The first is a method to split the multiple vehicle problem into sections that can be iteratively transmitted in packets with bandwidth bounds. This is done through delayed elimination of external states, which are states involved in intervehicle observations. Observations are placed in subgraphs that accumulate between external states. Internal states, which are all states not involved in intervehicle observations, can then be eliminated from each subgraph and the joint probability of the start and end states is shared between vehicles and combined to yield the solution to the entire graph. The second contribution is usage of variable reordering within these packets to enable handling of delayed observations that target an existing state such as with visual loop closures. We identify the calculations required to give the conditional probability of the delayed historical state on the existing external states before and after. This reduces the recalculation to updating the factorisation of a single subgraph and is independent of the time since the observation was made. The third contribution is a method and conditions for insertion of states into existing packets that does not invalidate previously transmitted data. We derive the conditions that enable this method and our fourth contribution is two motion models that conform to the conditions. Together this permits handling of the general out of sequence case

    Formal Modelling for Multi-Robot Systems Under Uncertainty

    Get PDF
    Purpose of Review: To effectively synthesise and analyse multi-robot behaviour, we require formal task-level models which accurately capture multi-robot execution. In this paper, we review modelling formalisms for multi-robot systems under uncertainty, and discuss how they can be used for planning, reinforcement learning, model checking, and simulation. Recent Findings: Recent work has investigated models which more accurately capture multi-robot execution by considering different forms of uncertainty, such as temporal uncertainty and partial observability, and modelling the effects of robot interactions on action execution. Other strands of work have presented approaches for reducing the size of multi-robot models to admit more efficient solution methods. This can be achieved by decoupling the robots under independence assumptions, or reasoning over higher level macro actions. Summary: Existing multi-robot models demonstrate a trade off between accurately capturing robot dependencies and uncertainty, and being small enough to tractably solve real world problems. Therefore, future research should exploit realistic assumptions over multi-robot behaviour to develop smaller models which retain accurate representations of uncertainty and robot interactions; and exploit the structure of multi-robot problems, such as factored state spaces, to develop scalable solution methods.Comment: 23 pages, 0 figures, 2 tables. Current Robotics Reports (2023). This version of the article has been accepted for publication, after peer review (when applicable) but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://dx.doi.org/10.1007/s43154-023-00104-
    • …
    corecore