947 research outputs found

    On Agent-Based Software Engineering

    Get PDF
    Agent-based computing represents an exciting new synthesis both for Artificial Intelligence (AI) and, more generally, Computer Science. It has the potential to significantly improve the theory and the practice of modeling, designing, and implementing computer systems. Yet, to date, there has been little systematic analysis of what makes the agent-based approach such an appealing and powerful computational model. Moreover, even less effort has been devoted to discussing the inherent disadvantages that stem from adopting an agent-oriented view. Here both sets of issues are explored. The standpoint of this analysis is the role of agent-based software in solving complex, real-world problems. In particular, it will be argued that the development of robust and scalable software systems requires autonomous agents that can complete their objectives while situated in a dynamic and uncertain environment, that can engage in rich, high-level social interactions, and that can operate within flexible organisational structures

    A review of approaches to supply chain communications: from manufacturing to construction

    Get PDF
    With the increasing importance of computer-based communication technologies, communication networks are becoming crucial in supply chain management. Given the objectives of the supply chain: to have the right products in the right quantities, at the right place, at the right moment and at minimal cost, supply chain management is situated at the intersection of different professional sectors. This is particularly the case in construction, since building needs for its fabrication the incorporation of a number of industrial products. This paper provides a review of the main approaches to supply chain communications as used mainly in manufacturing industries. The paper analyses the extent to which these have been applied to construction. It also reviews the on-going developments and research activities in this domain

    FuturICT: Participatory computing to understand and manage our complex world in a more sustainable and resilient way

    Get PDF
    We have built particle accelerators to understand the forces that make up our physical world. Yet, we do not understand the principles underlying our strongly connected, techno-socio-economic systems. We have enabled ubiquitous Internet connectivity and instant, global information access. Yet we do not understand how it impacts our behavior and the evolution of society. To fill the knowledge gaps and keep up with the fast pace at which our world is changing, a Knowledge Accelerator must urgently be created. The financial crisis, international wars, global terror, the spreading of diseases and cyber-crime as well as demographic, technological and environmental change demonstrate that humanity is facing serious challenges. These problems cannot be solved within the traditional paradigms. Moving our attention from a component-oriented view of the world to an interaction-oriented view will allow us to understand the complex systems we have created and the emergent collective phenomena characterising them. This paradigm shift will enable new solutions to long-standing problems, very much as the shift from a geocentric to a heliocentric worldview has facilitated modern physics and the ability to launch satellites. The FuturICT flagship project will develop new science and technology to manage our future in a complex, strongly connected world. For this, it will combine the power of information and communication technology (ICT) with knowledge from the social and complexity sciences. ICT will provide the data to boost the social sciences into a new era. Complexity science will shed new light on the emergent phenomena in socially interactive systems, and the social sciences will provide a better understanding of the opportunities and risks of strongly networked systems, in particular future ICT systems. Hence, the envisaged FuturICT flagship will create new methods and instruments to tackle the challenges of the 21st century. FuturICT could indeed become one of the most important scientific endeavours ever, by revealing the principles that make socially interactive systems work well, by inspiring the creation of new platforms to explore our possible futures, and by initiating an era of social and socio-inspired innovations. Graphical abstrac

    FuturICT: Participatory computing to understand and manage our complex world in a more sustainable and resilient way

    Get PDF
    We have built particle accelerators to understand the forces that make up our physical world. Yet, we do not understand the princi-ples underlying our strongly connected, techno-socio-economic systems. We have enabled ubiquitous Internet connectivity and instant, global information access. Yet we do not understand how it impacts our be-havior and the evolution of society. To fill the knowledge gaps and keep up with the fast pace at which our world is changing, a Knowledge Accelerator must urgently be cre-ated. The financial crisis, international wars, global terror, the spread-ing of diseases and cyber-crime as well as demographic, technological and environmental change demonstrate that humanity is facing seri-ous challenges. These problems cannot be solved within the traditional paradigms. Moving our attention from a component-oriented view of the world to an interaction-oriented view will allow us to understand the com-plex systems we have created and the emergent collective phenomena characterising them. This paradigm shift will enable new solutions to long-standing problems, very much as the shift from a geocentric to a heliocentric worldview has facilitated modern physics and the ability to launch satellites. The FuturICT flagship project will develop new science and technology to manage our future in a complex, strongly connected world. For this, it will combine the power of information and communication technol-ogy (ICT) with knowledge from the social and complexity sciences. ICT will provide the data to boost the social sciences into a new era. Complexity science will shed new light on the emergent phenomena in socially interactive systems, and the social sciences will provide a better understanding of the opportunities and risks of strongly net-worked systems, in particular future ICT systems. Hence, the envisaged FuturICT flagship will create new methods and instruments to tackle the challenges of the 21 st century. FuturICT could indeed become one of the most important scientific endeavours ever, by revealing the principles that make socially inter-active systems work well, by inspiring the creation of new platforms to explore our possible futures, and by initiating an era of social and socio-inspired innovations

    An Overlay Architecture for Personalized Object Access and Sharing in a Peer-to-Peer Environment

    Get PDF
    Due to its exponential growth and decentralized nature, the Internet has evolved into a chaotic repository, making it difficult for users to discover and access resources of interest to them. As a result, users have to deal with the problem of information overload. The Semantic Web's emergence provides Internet users with the ability to associate explicit, self-described semantics with resources. This ability will facilitate in turn the development of ontology-based resource discovery tools to help users retrieve information in an efficient manner. However, it is widely believed that the Semantic Web of the future will be a complex web of smaller ontologies, mostly created by various groups of web users who share a similar interest, referred to as a Community of Interest. This thesis proposes a solution to the information overload problem using a user driven framework, referred to as a Personalized Web, that allows individual users to organize themselves into Communities of Interests based on ontologies agreed upon by all community members. Within this framework, users can define and augment their personalized views of the Internet by associating specific properties and attributes to resources and defining constraint-functions and rules that govern the interpretation of the semantics associated with the resources. Such views can then be used to capture the user's interests and integrate these views into a user-defined Personalized Web. As a proof of concept, a Personalized Web architecture that employs ontology-based semantics and a structured Peer-to-Peer overlay network to provide a foundation of semantically-based resource indexing and advertising is developed. In order to investigate mechanisms that support the resource advertising and retrieval of the Personalized Web architecture, three agent-driven advertising and retrieval schemes, the Aggressive scheme, the Crawler-based scheme, and the Minimum-Cover-Rule scheme, were implemented and evaluated in both stable and churn environments. In addition to the development of a Personalized Web architecture that deals with typical web resources, this thesis used a case study to explore the potential of the Personalized Web architecture to support future web service workflow applications. The results of this investigation demonstrated that the architecture can support the automation of service discovery, negotiation, and invocation, allowing service consumers to actualize a personalized web service workflow. Further investigation will be required to improve the performance of the automation and allow it to be performed in a secure and robust manner. In order to support the next generation Internet, further exploration will be needed for the development of a Personalized Web that includes ubiquitous and pervasive resources

    Money & Trust in Digital Society, Bitcoin and Stablecoins in ML enabled Metaverse Telecollaboration

    Full text link
    We present a state of the art and positioning book, about Digital society tools, namely; Web3, Bitcoin, Metaverse, AI/ML, accessibility, safeguarding and telecollaboration. A high level overview of Web3 technologies leads to a description of blockchain, and the Bitcoin network is specifically selected for detailed examination. Suitable components of the extended Bitcoin ecosystem are described in more depth. Other mechanisms for native digital value transfer are described, with a focus on `money'. Metaverse technology is over-viewed, primarily from the perspective of Bitcoin and extended reality. Bitcoin is selected as the best contender for value transfer in metaverses because of it's free and open source nature, and network effect. Challenges and risks of this approach are identified. A cloud deployable virtual machine based technology stack deployment guide with a focus on cybersecurity best practice can be downloaded from GitHub to experiment with the technologies. This deployable lab is designed to inform development of secure value transaction, for small and medium sized companies
    • ā€¦
    corecore