12,194 research outputs found

    A Market-based Approach to Multi-factory Scheduling

    No full text
    In this paper, we report on the design of a novel market-based approach for decentralised scheduling across multiple factories. Specifically, because of the limitations of scheduling in a centralised manner -- which requires a center to have complete and perfect information for optimality and the truthful revelation of potentially commercially private preferences to that center -- we advocate an informationally decentralised approach that is both agile and dynamic. In particular, this work adopts a market-based approach for decentralised scheduling by considering the different stakeholders representing different factories as self-interested, profit-motivated economic agents that trade resources for the scheduling of jobs. The overall schedule of these jobs is then an emergent behaviour of the strategic interaction of these trading agents bidding for resources in a market based on limited information and their own preferences. Using a simple (zero-intelligence) bidding strategy, we empirically demonstrate that our market-based approach achieves a lower bound efficiency of 84%. This represents a trade-off between a reasonable level of efficiency (compared to a centralised approach) and the desirable benefits of a decentralised solution

    Decentralised Workload Scheduler for Resource Allocation in Computational Clusters

    Get PDF
    This paper presents a detailed design of a decentralised agent-based scheduler, which can be used to manage workloads within the computing cells of a Cloud system. Our proposed solution is based on the concept of service allocation negotiation, whereby all system nodes communicate between themselves, and scheduling logic is decentralised. The presented architecture has been implemented, with multiple simulations run using real-world workload traces from the Google Cluster Data project. The results were then compared to the scheduling patterns of Google’s Borg system

    Assessing the potential of decentralised scheduling: An experimental study for the job shop case

    Get PDF
    -Part of special issue: 10th IFAC Conference on Manufacturing Modelling, Management and Control MIM 2022: Nantes, France, 22-24 June 2022. -Copyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license.In this paper we investigate how decentralised scheduling approaches can be used to improve manufacturing scheduling. In view of the potential shown by some of these novel decentralised approaches, we conduct a series of experiments on a set of job shop instances subject to different degrees of variability in their processing times, and compare the performance of different scoring methods under the Contract Net Protocol proposed by Guizzi et al. (2019) with the objective of minimizing the expected makespan. We also compare the performance of the optimal (centralised and deterministic) solution in the stochastic setting, as well as a hybrid centralised-decentralised approach. Despite some limitations in the experiments, the results show the excellent performance of the decentralised approach if its operating parameters are optimized, and that the hybrid approach serves to overcome some of the problems of both centralised and decentralised approaches

    Executing Bag of Distributed Tasks on the Cloud: Investigating the Trade-offs Between Performance and Cost

    Get PDF
    Bag of Distributed Tasks (BoDT) can benefit from decentralised execution on the Cloud. However, there is a trade-off between the performance that can be achieved by employing a large number of Cloud VMs for the tasks and the monetary constraints that are often placed by a user. The research reported in this paper is motivated towards investigating this trade-off so that an optimal plan for deploying BoDT applications on the cloud can be generated. A heuristic algorithm, which considers the user's preference of performance and cost is proposed and implemented. The feasibility of the algorithm is demonstrated by generating execution plans for a sample application. The key result is that the algorithm generates optimal execution plans for the application over 91\% of the time

    Executing Bag of Distributed Tasks on Virtually Unlimited Cloud Resources

    Get PDF
    Bag-of-Distributed-Tasks (BoDT) application is the collection of identical and independent tasks each of which requires a piece of input data located around the world. As a result, Cloud computing offers an ef- fective way to execute BoT application as it not only consists of multiple geographically distributed data centres but also allows a user to pay for what she actually uses only. In this paper, BoDT on the Cloud using virtually unlimited cloud resources. A heuristic algorithm is proposed to find an execution plan that takes budget constraints into account. Compared with other approaches, with the same given budget, our algorithm is able to reduce the overall execution time up to 50%

    A Survey of Scheduling in 5G URLLC and Outlook for Emerging 6G Systems

    Get PDF
    Future wireless communication is expected to be a paradigm shift from three basic service requirements of 5th Generation (5G) including enhanced Mobile Broadband (eMBB), Ultra Reliable and Low Latency communication (URLLC) and the massive Machine Type Communication (mMTC). Integration of the three heterogeneous services into a single system is a challenging task. The integration includes several design issues including scheduling network resources with various services. Specially, scheduling the URLLC packets with eMBB and mMTC packets need more attention as it is a promising service of 5G and beyond systems. It needs to meet stringent Quality of Service (QoS) requirements and is used in time-critical applications. Thus through understanding of packet scheduling issues in existing system and potential future challenges is necessary. This paper surveys the potential works that addresses the packet scheduling algorithms for 5G and beyond systems in recent years. It provides state of the art review covering three main perspectives such as decentralised, centralised and joint scheduling techniques. The conventional decentralised algorithms are discussed first followed by the centralised algorithms with specific focus on single and multi-connected network perspective. Joint scheduling algorithms are also discussed in details. In order to provide an in-depth understanding of the key scheduling approaches, the performances of some prominent scheduling algorithms are evaluated and analysed. This paper also provides an insight into the potential challenges and future research directions from the scheduling perspective

    The Cathedral and the bazaar: (de)centralising certitude in river basin management

    Get PDF

    Catching Cheats: Detecting Strategic Manipulation in Distributed Optimisation of Electric Vehicle Aggregators

    Full text link
    Given the rapid rise of electric vehicles (EVs) worldwide, and the ambitious targets set for the near future, the management of large EV fleets must be seen as a priority. Specifically, we study a scenario where EV charging is managed through self-interested EV aggregators who compete in the day-ahead market in order to purchase the electricity needed to meet their clients' requirements. With the aim of reducing electricity costs and lowering the impact on electricity markets, a centralised bidding coordination framework has been proposed in the literature employing a coordinator. In order to improve privacy and limit the need for the coordinator, we propose a reformulation of the coordination framework as a decentralised algorithm, employing the Alternating Direction Method of Multipliers (ADMM). However, given the self-interested nature of the aggregators, they can deviate from the algorithm in order to reduce their energy costs. Hence, we study the strategic manipulation of the ADMM algorithm and, in doing so, describe and analyse different possible attack vectors and propose a mathematical framework to quantify and detect manipulation. Importantly, this detection framework is not limited the considered EV scenario and can be applied to general ADMM algorithms. Finally, we test the proposed decentralised coordination and manipulation detection algorithms in realistic scenarios using real market and driver data from Spain. Our empirical results show that the decentralised algorithm's convergence to the optimal solution can be effectively disrupted by manipulative attacks achieving convergence to a different non-optimal solution which benefits the attacker. With respect to the detection algorithm, results indicate that it achieves very high accuracies and significantly outperforms a naive benchmark

    Stability conditions for a decentralised medium access algorithm: single- and multi-hop networks

    Get PDF
    We consider a decentralised multi-access algorithm, motivated primarily by the control of transmissions in a wireless network. For a finite single-hop network with arbitrary interference constraints we prove stochastic stability under the natural conditions. For infinite and finite single-hop networks, we obtain broad rate-stability conditions. We also consider symmetric finite multi-hop networks and show that the natural condition is sufficient for stochastic stability

    On Secure Workflow Decentralisation on the Internet

    Get PDF
    Decentralised workflow management systems are a new research area, where most work to-date has focused on the system's overall architecture. As little attention has been given to the security aspects in such systems, we follow a security driven approach, and consider, from the perspective of available security building blocks, how security can be implemented and what new opportunities are presented when empowering the decentralised environment with modern distributed security protocols. Our research is motivated by a more general question of how to combine the positive enablers that email exchange enjoys, with the general benefits of workflow systems, and more specifically with the benefits that can be introduced in a decentralised environment. This aims to equip email users with a set of tools to manage the semantics of a message exchange, contents, participants and their roles in the exchange in an environment that provides inherent assurances of security and privacy. This work is based on a survey of contemporary distributed security protocols, and considers how these protocols could be used in implementing a distributed workflow management system with decentralised control . We review a set of these protocols, focusing on the required message sequences in reviewing the protocols, and discuss how these security protocols provide the foundations for implementing core control-flow, data, and resource patterns in a distributed workflow environment
    corecore