2,015 research outputs found

    Decentralised Edge-Computing and IoT through Distributed Trust

    Get PDF
    The emerging Internet of Things needs edge-computing - this is an established fact. In turn, edge computing needs infrastructure decentralisation. What is not necessarily established yet is that infrastructure decentralisation needs a distributed model of Internet governance and decentralised trust schemes. We discuss the features of a decentralised IoT and edge-computing ecosystem and list the components that need to be designed, as well the challenges that need to be addressed

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Securing fog computing with a decentralised user authentication approach based on blockchain

    Get PDF
    The use of low-cost sensors in IoT over high-cost devices has been considered less expensive. However, these low-cost sensors have their own limitations such as the accuracy, quality, and reliability of the data collected. Fog computing offers solutions to those limitations; nevertheless, owning to its intrinsic distributed architecture, it faces challenges in the form of security of fog devices, secure authentication and privacy. Blockchain technology has been utilised to offer solutions for the authentication and security challenges in fog systems. This paper proposes an authentication system that utilises the characteristics and advantages of blockchain and smart contracts to authenticate users securely. The implemented system uses the email address, username, Ethereum address, password and data from a biometric reader to register and authenticate users. Experiments showed that the proposed method is secure and achieved performance improvement when compared to existing methods. The comparison of results with state-of-the-art showed that the proposed authentication system consumed up to 30% fewer resources in transaction and execution cost; however, there was an increase of up to 30% in miner fees

    Blockchain-based secure authentication with improved performance for fog computing

    Get PDF
    Advancement in the Internet of Things (IoT) and cloud computing has escalated the number of connected edge devices in a smart city environment. Having billions more devices has contributed to security concerns, and an attack-proof authentication mechanism is the need of the hour to sustain the IoT environment. Securing all devices could be a huge task and require lots of computational power, and can be a bottleneck for devices with fewer computational resources. To improve the authentication mechanism, many researchers have proposed decentralized applications such as blockchain technology for securing fog and IoT environments. Ethereum is considered a popular blockchain platform and is used by researchers to implement the authentication mechanism due to its programable smart contract. In this research, we proposed a secure authentication mechanism with improved performance. Neo blockchain is a platform that has properties that can provide improved security and faster execution. The research utilizes the intrinsic properties of Neo blockchain to develop a secure authentication mechanism. The proposed authentication mechanism is compared with the existing algorithms and shows that the proposed mechanism is 20 to 90 per cent faster in execution time and has over 30 to 70 per cent decrease in registration and authentication when compared to existing methods

    Blockchain for IoT Access Control: Recent Trends and Future Research Directions

    Full text link
    With the rapid development of wireless sensor networks, smart devices, and traditional information and communication technologies, there is tremendous growth in the use of Internet of Things (IoT) applications and services in our everyday life. IoT systems deal with high volumes of data. This data can be particularly sensitive, as it may include health, financial, location, and other highly personal information. Fine-grained security management in IoT demands effective access control. Several proposals discuss access control for the IoT, however, a limited focus is given to the emerging blockchain-based solutions for IoT access control. In this paper, we review the recent trends and critical needs for blockchain-based solutions for IoT access control. We identify several important aspects of blockchain, including decentralised control, secure storage and sharing information in a trustless manner, for IoT access control including their benefits and limitations. Finally, we note some future research directions on how to converge blockchain in IoT access control efficiently and effectively

    A Zero-Trust Federated Identity and Access Management Framework for Cloud and Cloud-based Computing Environments

    Get PDF
    Identity and Access Management (IAM) is an important aspect of information security. The deployment of cloud computing (CC) and cloud-based computing (CbC) creates a complex information security scenario involving multiple global stakeholders and geographically dispersed infrastructures. Therefore, implementing IAM in CC/CbC requires the consideration and consolidation of multiple factors. A trust-based approach towards information security may not be a credible option for the CC/CbC environment as trust-based relationships among different architectural elements and including human beings may pose an additional security threat to the cloud space. In this paper, we propose a zero-trust framework for federated IAM in CC/CbC. The proposed framework incorporates a decentralised approach towards IAM that aims to minimise any single entity’s controlling power over the digital assets in the CC/CbC space. The critical component of the proposed framework is the decentralised audit log

    New Waves of IoT Technologies Research – Transcending Intelligence and Senses at the Edge to Create Multi Experience Environments

    Get PDF
    The next wave of Internet of Things (IoT) and Industrial Internet of Things (IIoT) brings new technological developments that incorporate radical advances in Artificial Intelligence (AI), edge computing processing, new sensing capabilities, more security protection and autonomous functions accelerating progress towards the ability for IoT systems to self-develop, self-maintain and self-optimise. The emergence of hyper autonomous IoT applications with enhanced sensing, distributed intelligence, edge processing and connectivity, combined with human augmentation, has the potential to power the transformation and optimisation of industrial sectors and to change the innovation landscape. This chapter is reviewing the most recent advances in the next wave of the IoT by looking not only at the technology enabling the IoT but also at the platforms and smart data aspects that will bring intelligence, sustainability, dependability, autonomy, and will support human-centric solutions.acceptedVersio

    Convergence of Blockchain and Edge Computing for Secure and Scalable IIoT Critical Infrastructures in Industry 4.0

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordCritical infrastructure systems are vital to underpin the functioning of a society and economy. Due to ever-increasing number of Internet-connected Internet-of-Things (IoTs) / Industrial IoT (IIoT), and high volume of data generated and collected, security and scalability are becoming burning concerns for critical infrastructures in industry 4.0. The blockchain technology is essentially a distributed and secure ledger that records all the transactions into a hierarchically expanding chain of blocks. Edge computing brings the cloud capabilities closer to the computation tasks. The convergence of blockchain and edge computing paradigms can overcome the existing security and scalability issues. In this paper, we first introduce the IoT/IIoT critical infrastructure in industry 4.0, and then we briefly present the blockchain and edge computing paradigms. After that, we show how the convergence of these two paradigms can enable secure and scalable critical infrastructures. Then, we provide a survey on state-of-the-art for security and privacy, and scalability of IoT/IIoT critical infrastructures. A list of potential research challenges and open issues in this area is also provided, which can be used as useful resources to guide future research.Engineering and Physical Sciences Research Council (EPSRC
    • …
    corecore