83 research outputs found

    Blockchain-based recommender systems: Applications, challenges and future opportunities

    Get PDF
    Recommender systems have been widely used in different application domains including energy-preservation, e-commerce, healthcare, social media, etc. Such applications require the analysis and mining of massive amounts of various types of user data, including demographics, preferences, social interactions, etc. in order to develop accurate and precise recommender systems. Such datasets often include sensitive information, yet most recommender systems are focusing on the models' accuracy and ignore issues related to security and the users' privacy. Despite the efforts to overcome these problems using different risk reduction techniques, none of them has been completely successful in ensuring cryptographic security and protection of the users' private information. To bridge this gap, the blockchain technology is presented as a promising strategy to promote security and privacy preservation in recommender systems, not only because of its security and privacy salient features, but also due to its resilience, adaptability, fault tolerance and trust characteristics. This paper presents a holistic review of blockchain-based recommender systems covering challenges, open issues and solutions. Accordingly, a well-designed taxonomy is introduced to describe the security and privacy challenges, overview existing frameworks and discuss their applications and benefits when using blockchain before indicating opportunities for future research. 2021 Elsevier Inc.This paper was made possible by National Priorities Research Program (NPRP) grant No. 10-0130-170288 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.Scopu

    Jointly integrating current context and social influence for improving recommendation

    Get PDF
    La diversité des contenus recommandation et la variation des contextes des utilisateurs rendent la prédiction en temps réel des préférences des utilisateurs de plus en plus difficile mettre en place. Toutefois, la plupart des approches existantes n'utilisent que le temps et l'emplacement actuels séparément et ignorent d'autres informations contextuelles sur lesquelles dépendent incontestablement les préférences des utilisateurs (par exemple, la météo, l'occasion). En outre, ils ne parviennent pas considérer conjointement ces informations contextuelles avec les interactions sociales entre les utilisateurs. D'autre part, la résolution de problèmes classiques de recommandation (par exemple, aucun programme de télévision vu par un nouvel utilisateur connu sous le nom du problème de démarrage froid et pas assez d'items co-évalués par d'autres utilisateurs ayant des préférences similaires, connu sous le nom du problème de manque de donnes) est d'importance significative puisque sont attaqués par plusieurs travaux. Dans notre travail de thèse, nous proposons un modèle probabiliste qui permet exploiter conjointement les informations contextuelles actuelles et l'influence sociale afin d'améliorer la recommandation des items. En particulier, le modèle probabiliste vise prédire la pertinence de contenu pour un utilisateur en fonction de son contexte actuel et de son influence sociale. Nous avons considérer plusieurs éléments du contexte actuel des utilisateurs tels que l'occasion, le jour de la semaine, la localisation et la météo. Nous avons utilisé la technique de lissage Laplace afin d'éviter les fortes probabilités. D'autre part, nous supposons que l'information provenant des relations sociales a une influence potentielle sur les préférences des utilisateurs. Ainsi, nous supposons que l'influence sociale dépend non seulement des évaluations des amis mais aussi de la similarité sociale entre les utilisateurs. Les similarités sociales utilisateur-ami peuvent être établies en fonction des interactions sociales entre les utilisateurs et leurs amis (par exemple les recommandations, les tags, les commentaires). Nous proposons alors de prendre en compte l'influence sociale en fonction de la mesure de similarité utilisateur-ami afin d'estimer les préférences des utilisateurs. Nous avons mené une série d'expérimentations en utilisant un ensemble de donnes réelles issues de la plateforme de TV sociale Pinhole. Cet ensemble de donnes inclut les historiques d'accès des utilisateurs-vidéos et les réseaux sociaux des téléspectateurs. En outre, nous collectons des informations contextuelles pour chaque historique d'accès utilisateur-vidéo saisi par le système de formulaire plat. Le système de la plateforme capture et enregistre les dernières informations contextuelles auxquelles le spectateur est confronté en regardant une telle vidéo.Dans notre évaluation, nous adoptons le filtrage collaboratif axé sur le temps, le profil dépendant du temps et la factorisation de la matrice axe sur le réseau social comme tant des modèles de référence. L'évaluation a port sur deux tâches de recommandation. La première consiste sélectionner une liste trie de vidéos. La seconde est la tâche de prédiction de la cote vidéo. Nous avons évalué l'impact de chaque élément du contexte de visualisation dans la performance de prédiction. Nous testons ainsi la capacité de notre modèle résoudre le problème de manque de données et le problème de recommandation de démarrage froid du téléspectateur. Les résultats expérimentaux démontrent que notre modèle surpasse les approches de l'état de l'art fondes sur le facteur temps et sur les réseaux sociaux. Dans les tests des problèmes de manque de donnes et de démarrage froid, notre modèle renvoie des prédictions cohérentes différentes valeurs de manque de données.Due to the diversity of alternative contents to choose and the change of users' preferences, real-time prediction of users' preferences in certain users' circumstances becomes increasingly hard for recommender systems. However, most existing context-aware approaches use only current time and location separately, and ignore other contextual information on which users' preferences may undoubtedly depend (e.g. weather, occasion). Furthermore, they fail to jointly consider these contextual information with social interactions between users. On the other hand, solving classic recommender problems (e.g. no seen items by a new user known as cold start problem, and no enough co-rated items with other users with similar preference as sparsity problem) is of significance importance since it is drawn by several works. In our thesis work, we propose a context-based approach that leverages jointly current contextual information and social influence in order to improve items recommendation. In particular, we propose a probabilistic model that aims to predict the relevance of items in respect with the user's current context. We considered several current context elements such as time, location, occasion, week day, location and weather. In order to avoid strong probabilities which leads to sparsity problem, we used Laplace smoothing technique. On the other hand, we argue that information from social relationships has potential influence on users' preferences. Thus, we assume that social influence depends not only on friends' ratings but also on social similarity between users. We proposed a social-based model that estimates the relevance of an item in respect with the social influence around the user on the relevance of this item. The user-friend social similarity information may be established based on social interactions between users and their friends (e.g. recommendations, tags, comments). Therefore, we argue that social similarity could be integrated using a similarity measure. Social influence is then jointly integrated based on user-friend similarity measure in order to estimate users' preferences. We conducted a comprehensive effectiveness evaluation on real dataset crawled from Pinhole social TV platform. This dataset includes viewer-video accessing history and viewers' friendship networks. In addition, we collected contextual information for each viewer-video accessing history captured by the plat form system. The platform system captures and records the last contextual information to which the viewer is faced while watching such a video. In our evaluation, we adopt Time-aware Collaborative Filtering, Time-Dependent Profile and Social Network-aware Matrix Factorization as baseline models. The evaluation focused on two recommendation tasks. The first one is the video list recommendation task and the second one is video rating prediction task. We evaluated the impact of each viewing context element in prediction performance. We tested the ability of our model to solve data sparsity and viewer cold start recommendation problems. The experimental results highlighted the effectiveness of our model compared to the considered baselines. Experimental results demonstrate that our approach outperforms time-aware and social network-based approaches. In the sparsity and cold start tests, our approach returns consistently accurate predictions at different values of data sparsity

    Taking Computation to Data: Integrating Privacy-preserving AI techniques and Blockchain Allowing Secure Analysis of Sensitive Data on Premise

    Get PDF
    PhD thesis in Information technologyWith the advancement of artificial intelligence (AI), digital pathology has seen significant progress in recent years. However, the use of medical AI raises concerns about patient data privacy. The CLARIFY project is a research project funded under the European Union’s Marie Sklodowska-Curie Actions (MSCA) program. The primary objective of CLARIFY is to create a reliable, automated digital diagnostic platform that utilizes cloud-based data algorithms and artificial intelligence to enable interpretation and diagnosis of wholeslide-images (WSI) from any location, maximizing the advantages of AI-based digital pathology. My research as an early stage researcher for the CLARIFY project centers on securing information systems using machine learning and access control techniques. To achieve this goal, I extensively researched privacy protection technologies such as federated learning, differential privacy, dataset distillation, and blockchain. These technologies have different priorities in terms of privacy, computational efficiency, and usability. Therefore, we designed a computing system that supports different levels of privacy security, based on the concept: taking computation to data. Our approach is based on two design principles. First, when external users need to access internal data, a robust access control mechanism must be established to limit unauthorized access. Second, it implies that raw data should be processed to ensure privacy and security. Specifically, we use smart contractbased access control and decentralized identity technology at the system security boundary to ensure the flexibility and immutability of verification. If the user’s raw data still cannot be directly accessed, we propose to use dataset distillation technology to filter out privacy, or use locally trained model as data agent. Our research focuses on improving the usability of these methods, and this thesis serves as a demonstration of current privacy-preserving and secure computing technologies

    The Internet of Things supporting the Cultural Heritage domain: analysis, design and implementation of a smart framework enhancing the smartness of cultural spaces

    Get PDF
    Nowadays embedded systems have reached a great level of maturity and diffusion thanks to their small size, low power consumption, large connectivity and variety of application in everyday contexts. These systems, if properly structured and configured, can signifi- cantly increase the smartness of the environments where they are deployed, monitoring and continuously collecting data to be processed and elaborated. In this perspective, the Internet of Things (IoT) paradigm supports the transition from a closed world, in which an object is characterized by a descriptor, to an open world, in which objects interact with the surrounding environment, because they have become ”intelligent”. Accordingly, not only people will be connected to the internet, but objects such as cars, fridges, televisions, water management systems, buildings, monuments and so on will be connected as well. The Cultural Heritage represents a worldwide resource of inestimable value, attracting millions of visitors every year to monuments, museums and art exhi- bitions. Fundamental aspects of this resource to be investigated are its promotion and people enjoyment. Indeed, to achieve an enjoyment of a cultural space that is attractive and sustainable, it is necessary to realize ubiquitous and multimedia solutions for users’ interaction to enrich their visiting experience and improve the knowledge transmission process of a cultural site. The main target of this PhD Thesis is the study of the IoT paradigm, devoted to the design of a smart framework supporting the fruition, enjoyment and tutelage of the Cultural Heritage domain. In order to assess the proposed approach, a real case study is presented and discussed. In detail, it represents the deployment of our framework during an art exhibition, named The Beauty or the Truth within the Monumental Complex of San Domenico Maggiore, Naples (Italy). Following the Internet of Things paradigm, the proposed intelligent framework relies on the integration of a Sensor Network of Smart Objects with Wi-Fi and Bluetooth Low Energy technologies to identify, locate and support users. In this way technology can become a mediator between visitors and fruition, an instrument of connection between people, objects, and spaces to create new social, economic and cultural opportunities

    I-care-an interaction system for the individual activation of people with dementia

    Get PDF
    I-CARE is a hand-held activation system that allows professional and informal caregivers to cognitively and socially activate people with dementia in joint activation sessions without special training or expertise. I-CARE consists of an easy-to-use tablet application that presents activation content and a server-based backend system that securely manages the contents and events of activation sessions. It tracks various sources of explicit and implicit feedback from user interactions and different sensors to estimate which content is successful in activating individual users. Over the course of use, I-CARE’s recommendation system learns about the individual needs and resources of its users and automatically personalizes the activation content. In addition, information about past sessions can be retrieved such that activations seamlessly build on previous sessions while eligible stakeholders are informed about the current state of care and daily form of their protegees. In addition, caregivers can connect with supervisors and professionals through the I-CARE remote calling feature, to get activation sessions tracked in real time via audio and video support. In this way, I-CARE provides technical support for a decentralized and spontaneous formation of ad hoc activation groups and fosters tight engagement of the social network and caring community. By these means, I-CARE promotes new care infrastructures in the community and the neighborhood as well as relieves professional and informal caregivers

    Big Data and Artificial Intelligence in Digital Finance

    Get PDF
    This open access book presents how cutting-edge digital technologies like Big Data, Machine Learning, Artificial Intelligence (AI), and Blockchain are set to disrupt the financial sector. The book illustrates how recent advances in these technologies facilitate banks, FinTech, and financial institutions to collect, process, analyze, and fully leverage the very large amounts of data that are nowadays produced and exchanged in the sector. To this end, the book also describes some more the most popular Big Data, AI and Blockchain applications in the sector, including novel applications in the areas of Know Your Customer (KYC), Personalized Wealth Management and Asset Management, Portfolio Risk Assessment, as well as variety of novel Usage-based Insurance applications based on Internet-of-Things data. Most of the presented applications have been developed, deployed and validated in real-life digital finance settings in the context of the European Commission funded INFINITECH project, which is a flagship innovation initiative for Big Data and AI in digital finance. This book is ideal for researchers and practitioners in Big Data, AI, banking and digital finance

    Big Data and Artificial Intelligence in Digital Finance

    Get PDF
    This open access book presents how cutting-edge digital technologies like Big Data, Machine Learning, Artificial Intelligence (AI), and Blockchain are set to disrupt the financial sector. The book illustrates how recent advances in these technologies facilitate banks, FinTech, and financial institutions to collect, process, analyze, and fully leverage the very large amounts of data that are nowadays produced and exchanged in the sector. To this end, the book also describes some more the most popular Big Data, AI and Blockchain applications in the sector, including novel applications in the areas of Know Your Customer (KYC), Personalized Wealth Management and Asset Management, Portfolio Risk Assessment, as well as variety of novel Usage-based Insurance applications based on Internet-of-Things data. Most of the presented applications have been developed, deployed and validated in real-life digital finance settings in the context of the European Commission funded INFINITECH project, which is a flagship innovation initiative for Big Data and AI in digital finance. This book is ideal for researchers and practitioners in Big Data, AI, banking and digital finance

    The Challenges of Big Data - Contributions in the Field of Data Quality and Artificial Intelligence Applications

    Get PDF
    The term "big data" has been characterized by challenges regarding data volume, velocity, variety and veracity. Solving these challenges requires research effort that fits the needs of big data. Therefore, this cumulative dissertation contains five paper aiming at developing and applying AI approaches within the field of big data as well as managing data quality in big data

    Introduction to the Volume on Digital Media, Youth, and Credibility

    Get PDF
    This chapter argues that understanding credibility is particularly complex -- and consequential -- in the digital media environment, especially for youth audiences, who have both advantages and disadvantages due to their relationship with contemporary technologies and their life experience. The chapter explains what is, and what is not, new about credibility in the context of digital media and discusses the major thrusts of current credibility concerns for scholars, educators, and youth
    • …
    corecore